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Abstract—Compressed sensing (CS) involves sampling signals
at rates less than their Nyquist rates and attempting to recon-
struct them after sample acquisition. Most such algorithms have
parameters, for example the regularization parameter in LASSO,
which need to be chosen carefully for optimal performance.
These parameters can be chosen based on assumptions on the
noise level or signal sparsity, but this knowledge may often be
unavailable. In such cases, cross validation (CV) can be used to
choose these parameters in a purely data-driven fashion. Previous
work analyzing the use of CV in CS has been based on the `2
cross-validation error with Gaussian measurement noise. But it
is well known that the `2 error is not robust to impulse noise and
provides a poor estimate of the recovery error, failing to choose
the best parameter. Here we propose using the `1-CV error
which provides substantial performance benefits given impulse
measurement noise. Most importantly, we provide a detailed
theoretical analysis and error bounds for the use of `1-CV
error in CS reconstruction. We show that with high probability,
choosing the parameter that yields the minimum `1-CV error is
equivalent to choosing the minimum recovery error (which is not
observable in practice). To our best knowledge, this is the first
paper which theoretically analyzes `1-based CV in CS.

Index Terms—Compressed sensing, Cross validation, Impulse
noise, L1 error

I. INTRODUCTION

The goal of compressed sensing (CS) is to improve the
efficiency of signal acquisition by enabling a signal to be re-
constructed from a small number of its samples [1]. It involves
sampling the signal in a way such that most of the signal
information is inherently available despite undersampling. The
measured samples can be expressed in the form y = Φx+n,
where x ∈ RN is a column vector representing the unknown
signal, y ∈ Rm is the vector of measurements, n ∈ Rm is a
noise vector such that ni ∼ N (0, σ2

n/m), and Φ is an m×N
measurement matrix with m � N . The signal x is assumed
to have a sparse representation in some N × N orthonormal
basis Ψ so that x = Ψθ where θ ∈ RN is a sparse vector.
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The signal x can be reconstructed from its measurements
y using a variety of techniques such as LASSO [2] or greedy
algorithms like Orthogonal Matching pursuit (OMP) [3] and
its variants. LASSO seeks to minimize the cost function
‖y − Φx‖22 + λ‖x‖1 w.r.t. x, where λ is a regularization
parameter. OMP seeks to minimize ‖x‖0 s.t. ‖y−Φx‖2 ≤ εn
where εn is a regularization parameter dependent on the noise
level. For optimal choice of the regularization parameter, many
techniques rely on an estimate of the signal sparsity or noise
level. However in real world scenarios, such information may
not always be available. An alternative to this, proposed in [4],
is using cross validation (CV), which is a purely data-driven
technique. It proposes to set aside mcv < m measurements in
y only for cross-validation (and not for reconstruction). These
measurements are included in a mcv × 1 sub-vector ycv with
the corresponding mcv × N sub-matrix Φcv . The remaining
m−mcv measurements alone are used for compressive recon-
struction, with each different value λ of the parameter chosen
from a candidate set Λ. For each parameter value λ ∈ Λ, the
CV error εcv,`2,λ := ‖ycv − Φcvx̂λ‖2 is computed where
x̂λ is an estimate of x using parameter λ in LASSO. The
reconstruction x̂λ corresponding to the value λ ∈ Λ which
yielded the lowest value of εcv,`2,λ is chosen as the final
one. The work in [5] proves theoretically using the Johnson-
Lindenstrauss lemma [6] the close relationship between the
data-driven CV error εcv,`2,λ and the unobservable recovery
error εx := ‖x−x̂λ‖2 for the case of zero measurement noise.
A detailed analysis for the case of additive iid Gaussian noise
in the measurements y has been presented in [7], making use
of the central limit theorem (CLT). The work in [7] calculates
probabilistic bounds on the recovery error using the CV error,
which theoretically justifies use of CV for CS in noisy signals.

In this paper, we analyse the use of CV for signals with
mixed heavy-tailed and Gaussian noise in the measurement
vector y. The problem is motivated by the fact that heavy-
tailed noise is common in many compressive systems (see
[8], [9] and references therein). We observe that the `2-based
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CV error εcv,`2,λ fails to give an accurate estimate of the
actual recovery error for such noise models and fails to pick
the best value of regularization parameters. We propose using
the `1-based CV error εcv,`1,λ := ‖ycv − Φcvx̂λ‖1 instead,
and demonstrate its significant performance benefits given
impulse noise in the measurements. Most importantly, we
derive the distribution of εcv,`1,λ theoretically and establish
its relationship to the recovery error ‖x − x̂λ‖2. As will be
seen, our theoretical results match numerical simulation results
very closely.

II. PROBLEM FORMULATION AND MOTIVATION

The main aim of this section is to motivate the need
for `1-CV errors. Throughout this work, we use a Gaussian
sensing matrix, i.e ∀(i, j),Φij ∼ N (0, 1/m), though the
analysis can be easily extended to other sub-Gaussian sensing
matrices. As mentioned earlier, we consider a noise model
which consists of a mixture of additive iid Gaussian noise
from N (0, σ2

n/m) and impulse noise. The latter is modeled
as the product of a discrete random variable which takes on
values in {−1,+1, 0} and a Gaussian random variable with a
large mean as compared to σn, ‖x‖∞. Specifically, ηi which
is the ith element of the noise vector η, is given as,

ηi = ni +BiGi, (1)

Bi =


+1 w.p. b/2
0 w.p. 1− b
−1 w.p. b/2,

(2)

where ni ∼ N (0, σ2
n/m), Gi ∼ N (µg, σ

2
g). Here, we choose

the probability b to be small, due to the sparse nature of
impulse noise in many applications, and µg is chosen to be
large compared to σn, σg, ‖x‖∞, since impulse noise often
has very large magnitude as compared to the signal. Next, we

Fig. 1. Using `1-based CV error for parameter selection gives a much
better RMSE than `2-based CV error, in presence of different occurrence
probabilities (i.e., b) of impulse noise. The plots for `1-based CV error and
true error nearly overlap.

present simulation results for CS based recovery of a signal
with different amounts of impulse noise in the measurements.

We perform the reconstruction using the following version of
the LASSO with an `1-based data fidelity term:

x̂λ
∆
= argminx‖y −Φx‖1 + λ‖x‖1, (3)

in which we select the regularisation parameter λ based
on (1) minimum `1-CV error, (2) minimum `2-CV error,
and (3) the minimum actual recovery error (implausible in
real world, but useful for benchmarking). We use the pa-
rameters µg = 700, σn = 0.5, σg = 100,m = 420, N =
1200,mcv = 20, s = ‖x‖0 = 50, for the experiment. In
Fig. 1, we conduct a comparison between the performance
of `1- and `2-based CV for reconstruction using Eqn. 3 with
different amounts of impulse noise in the signal, by varying
b ∈ {0.01, 0.02, ..., 0.09, 0.1}. In this experiment, the non-zero
elements of x were chosen iid from N (0, 10). The results

Fig. 2. Using `1-based CV error for parameter selection gives a much better
RMSE than `2-based CV error, in presence of varying amounts of Gaussian
noise (σn) given a fixed, small occurrence of impulse noise (b = 0.02).

in Fig. 1 show that the parameter λ chosen using `1-based
CV error εcv,`1,λ gives a reconstruction whose RMSE almost
coincides with the actual error for a large number of possible
values of b. This implies that `1-based CV error is fairly robust
to impulse noise and provides a significantly superior estimate
of the real recovery error compared to `2-based CV error.

Further, we compare the RMSE error for signal reconstruc-
tion using λ chosen using `1-based CV error and `2-based
CV error for varying amount of non-impulse noise. For this
experiment, we fix the probability of occurrence of impulse
noise at b = 0.02 and vary σn from 0 to 15. All the other
parameters are same as the last experiment and non-zero
elements of x are chosen iid from N (0, 100). This figure
further impresses the robustness of reconstruction using `1-
based CV error compared to reconstruction using `2-based CV
error.

III. THEORETICAL RESULTS

Having seen some experimental results which strongly mo-
tivate the use of `1-based CV error, we now analytically derive
a relationship between εcv,`1,λ := ‖ycv − Φcvx̂λ‖1 and the
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recovery error εx := ‖x− x̂λ‖2. This relationship holds with
high probability (via the CLT) for large values of mcv . In
Lemma 1, we derive the distribution of the εcv,`1,λ in terms
of εx and validate this result with relevant experiments. In
Theorem 1, we use this distribution to obtain a high-probability
confidence interval on the recovery error. We also give some
experimental results to validate and illustrate the significance
of these bounds. The distribution of the difference between
the cross validation errors of two signal estimates is derived
in Lemma 2 using CLT. This Lemma is crucially used to
derive the probabilistic result in Theorem 2 which theoretically
backs the use of `1-based CV error to choose the optimal
regularization parameter.

Lemma 1: Assuming that µg � σg, σn, εx and that mcv is
sufficiently large, we have εcv,`1,λ ∼ N (µ, σ2), where

µ = bmcvµg + (1− b)mcv

√
2

mπ
(ε2
x + σ2

n),

σ2 = mcv

( 1

m
(1− (1− b)2 2

π
)(ε2

x + σ2
n) + b(σ2

g + (1− b)µ2
g)

− 2b(1− b)µg
√

2

mπ
(ε2
x + σ2

n)
)

. �

Fig. 3. The simulated (obtained over 105 noise realizations) and theoretically
obtained pdf of εcv,`1,λ (cf: Lemma 1) match closely.

Fig. 4. Empirical demonstration of confidence intervals from Theorem 1.

The various parameters in Lemma 1 have been earlier de-
fined in Sec. II. The proof of this lemma (included in the suppl.
material [10]) uses many properties of the absolute value of
the Gaussian distribution [11], [12] followed by the CLT. The
assumptions that µg � σg, σn, εx is reasonable for large
impulses and it helps in simplifying our analysis involving the
absolute value of the Gaussian distribution. Even if the CLT
is an asymptotic result, we have observed excellent agreement
between the empirically observed distribution of εcv,`1,λ and
the distribution predicted by Lemma 1, even at reasonable
values of mcv . This is seen in Fig. 3, where we empirically
compute the pdf of εcv,`1,λ for N = 1200,m = 800,mcv =
400, given a single signal and 105 noise realizations. This
clearly corroborates the correctness of Lemma 1. Also, we
observe that our assumption that µg � εx typically holds
for a wide range of values of the regularization parameter(
λ ∈ {0.001, 0.01, ...10000}) in our simulations. This is be-
cause impulses have very large magnitudes (as compared to
the signal), and the reconstruction error is typically not of the
same order as the impulse magnitude.

Theorem 1: Assuming that µg � σg, σn, εx, mcv is suffi-
ciently large, and using εcv as shorthand for εcv,`1,λ, the fol-
lowing confidence interval holds with probability erf(%/

√
2):√

m

mcv

εcv − p(%,+)

h(%,+)
≤

√
εx + σ2

n ≤
√
m

mcv

εcv − p(%,−)

h(%,−)
,

where p(%,±) := mcvbµG ± %
√
mcvb (σ2

G + (1− b)µ2
G)

h(%,±) := (1− b)
√

2

π
± %

√√√√√
(

1− (1− b)2 2

π

)
mcv

.�

Here, erf(u) :=
1√
π

∫ u
−u e−t

2

dt denotes the error function

and % is a free parameter. One can observe that choosing a
higher value of % gives a looser bound but the bound holds
with higher probability and vice versa for a lower value of %.
Furthermore, the width confidence interval from Theorem 1

denoted by C is given by w :=

√
m

mcv

(
εcv(h(%,+)− h(%,−))

h(%,−)h(%,+)

+
p(%,+)h(%,−)− p(%,−)h(%,+)

h(%,−)h(%,+)

)
. As shown at the end

of the proof of Theorem 1 in the supplemental material [10],
this confidence interval drops to 0 in the limit as mcv tends
to infinity. The proof of Theorem 1 crucially uses Lemma
1 and is included in the supp. material [10]. In Fig. 4, we
demonstrate the upper and lower bounds as per Theorem 1 and
the empirical recovery error for N = 1200,m = 400, 40 ≤
mcv ≤ 200, s = ‖x‖0 = 50, b = 0.1, σn = 0.5, µg =
700, σg = 100, % = 3. We note that similar results can be
obtained for other parameters as well. For generating Fig. 4,
we have averaged over 1000 instances, with new realizations
of all random variables in each instance. This figure as well as
Theorem 1 both predict that the bounds become tighter with
increase in mcv , which is quite intuitive.

Lemma 2: Let x̂p and x̂q be two recovered signals with
their respective `1-CV errors εpcv, ε

q
cv and respective true re-

covery errors εp, εq . Define ∆xp := x−xp,∆xq := x−xq .
Assuming that µg � σg, σn, εp, εq and that mcv is sufficiently
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Fig. 5. The simulated (obtained over 105 noise realizations) and theoretically
obtained pdf of ∆εcv := εpcv − εqcv (cf: Lemma 2) match closely.

large, we have ∆εcv := εpcv − εqcv ∼ N
(
µ, σ2

)
where

µ = (1− b)mcvK1 (σp − σq)
σ2 = (1− b)mcv

(
σ2
p + σ2

q − 2ρ1σpσq
)

+mcv
b

m

(
ε2
p + ε2

p

)
− 2bmcv

m
〈∆xp,∆xq〉 −mcv((1− b)K1(σp − σq))2

ρ1 =
σpσq
π

(
πρ2 − 2ρ2tan−1

(√
1− ρ2

2

ρ2

)
+ 2
√

1− ρ2
2

)

ρ2 =
σ2
n + 〈∆xp,∆xq〉

mσpσq
, σp =

√
ε2
p + σ2

n

m
, σq =√

ε2
q + σ2

n

m
, K1 =

√
2

π
.�

The proof of Lemma 2 can be found in the supp. material
[10]. We demonstrate the result of Lemma 2 in Fig. 5 for N =
1200,m = 440,mcv = 40, b = 0.1, σn = 0.5, σg = 100, µg =
700. We conduct some experiments similar to the ones in Fig.
5 which demonstrate that the distribution of ∆εcv obtained in
Lemma 2 indeed matches very closely with empirical results
corroborating our assumptions.
The following theorem shows that if the `1-CV error of one
recovered signal is larger than that of another recovered signal,
then with high probability, the `2 recovery errors for those
signals follow the same order.

Theorem 2: Let x̂p and x̂q be two recovered signals,
with (unobservable) recovery errors εpx, ε

q
x and corresponding

cross-validation errors εpcv, ε
q
cv . Assume µg >> σg, σn, εp, εq,

and mcv is sufficiently large. If εpx ≥ εqx, then it holds with
probability F (%) that εpcv ≥ εqcv , where % =

µ

σ
where, µ, σ are

as defined in Lemma 2 and F is the standard Gaussian CDF. �

From the expressions of µ, σ, %, one can observe that the
confidence with which εpx ≥ εqx holds increases monotonically
with mcv and tends to 1 as mcv increases. This is because, with
all other parameters fixed,

µ

σ
is proportional to

√
mcv . In Fig

6 we demonstrate this idea for N = 1200,m = 420,mcv =
20, ‖x‖0 = 50, b = 0.05, σn = 0.5, µg = 1000, σg = 20. It is
evident from Fig.6 that, as the difference in the cross validation

Fig. 6. Probability that εpcv ≥ εqcv as given by Theorem 2, plotted against

∆RMSE :=
|εpx − εqx|
‖x‖2

.

error of two recovered signals increases, the likelihood that
their recovery error follows the same order increases. This
observation is very crucial as it strongly supports the idea that
`1-CV error is a very good metric for choosing the optimal
regularization parameter in our experiments.

IV. EMPIRICAL RESULTS

We demonstrate the effectiveness of using `1-CV for param-
eter selection as compared to `2-CV on real data corrupted by
impulsive noise. We reconstruct an image from the BDD100K
[13] and INRIA Holidays [14] datasets using measurements
taken using a matrix with random binary (1,-1) entries, based
on the Rice single pixel camera model [15]. From each non
overlapping 8× 8 patch, m = 56 measurements are taken and
we add impulse noise (b = 0.06) to each such measurement
vector. These corrupted measurements are used to reconstruct
the image patch wise using LASSO with an `1 data fidelity
term, for which we select the regularization parameter using
`1 and `2-CV.

We can observe in Fig 7 and Fig 9 that using `1-CV
helps recover almost all patches faithfully. Choosing the
regularization parameter using `1-CV helps select the optimal
hyperparameters with high probability, as proved in Theorem
2. On the other hand, Fig 8 and Fig 10 demonstrate that using
`2-CV results in a poorer quality of reconstruction. Hence,
selecting the parameter giving the lowest `2-CV error does
not give good reconstruction results in such a case.

V. CONCLUSION

We provide a detailed theoretical and empirical analysis of
the `1-CV error when used for compressive reconstruction in
presence of mixed impulse and Gaussian noise. Under some
assumptions, we prove that the `1-CV error follows a Gaussian
distribution and further provide upper and lower bounds on the
recovery error of a signal estimate in terms of the `1-CV error
and perform simulations for generic parameters to validate
these results. We justify the use of `1-CV error for selecting
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Fig. 7. Reconstruction of an image from measurements corrupted with
impulsive noise, where parameters are selected using `1-CV

Fig. 8. Reconstruction from the same measurements used in Fig 7, where
parameters are selected using `2-CV instead

Fig. 9. Reconstruction of an image from measurements corrupted with
impulsive noise, where parameters are selected using `1-CV

Fig. 10. Reconstruction from the same measurements corrupted with impul-
sive noise used in Fig 9, where parameters are selected using `2-CV instead

the optimal parameter in signal reconstruction algorithms like
`1-LASSO, by proving that with high probability, the ordering
of the actual recovery error of any two signal estimates is the
same as the ordering of their `1-CV errors.
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