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Abstract—A robust principal component analysis (RPCA) on
graphs [Shahid et al., 2016] shows that a quadratic function,
say the graph regularizer, designed with two graph Laplacians,
can serve as a computationally efficient low-rankness promoting
regularizer. In this paper, we present a novel RPCA by combining
the graph regularizer with a generalized-Moreau-nonconvex-
enhancement of L1 norm. The proposed graph regularized RPCA
(GRPCA) model uses a nonconvex penalty while maintaining the
overall convexity and can be solved with a proximal splitting type
algorithm in [Abe, Yamagishi, and Yamada, 2020]. A numerical
experiment in a scenario of foreground and background decom-
position of a video demonstrates the efficacy of the proposed
GRPCA model.

Index Terms—Robust PCA, Linearly involved generalized
Moreau enhanced (LiGME) model, graph regularized PCA,
proximal splitting algorithm

I. INTRODUCTION

The classical principal component analysis (PCA), yet used
most widely for data analysis [1], is known to have brittleness
against grossly corrupted observations even at a small number
of entries of data [2], [3]. The robust PCA (RPCA) [2]–[4]
has been introduced as a decomposition of a matrix into the
sum of a low-rank matrix and a sparse matrix. For a given
M ∈ Rp×n, an ideal goal behind the RPCA is to solve

minimize
S∈Rp×n

rank(M − S) + µ‖S‖0, µ > 0, (1)

where ‖·‖0 stands for the number of nonzero entries in a
matrix [3]. However, since this problem (1) is NP-hard, its
convex relaxations and their algorithmic solutions have been
investigated [2]–[4].

In [2], rank(·) and ‖·‖0 are replaced by their convex
envelopes, i.e. the largest convex lower bounds, as

minimize
S∈Rp×n

‖M − S‖nuc + µ‖S‖1, µ > 0, (2)

where ‖·‖nuc and ‖·‖1 stand respectively for the sum of
all singular values and the sum of absolute values of all
entries. The problem (2) has been solved in [2] with the
alternating direction methods [5], [6]. In [3], the Douglas-
Rachford splitting [7] has been applied to the model (2), and
this idea has also been extended to tensor completion [8] and
hypercomplex generalization of RPCA [9]. To approximate the
model (1) more than via (2), replacement of ‖·‖nuc and ‖·‖1 in
(2) with other nonconvex functions have been investigated. For
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example, the ℓp norm (0 < p < 1) and the minimax concave
(MC) penalty [10] were used as more faithful nonconvex
regularizers to rank(M − ·) and ‖·‖0 [11], [12]. However,
finding a global minimizer of such nonconvex models has not
been guaranteed. Moreover, optimization algorithms in [2],
[3], [11], [12] require the singular value decomposition (SVD)
to cope with singular values at each iteration. Despite the great
effort for computational reduction of the SVD (see, e.g. [13]),
replaceable convex optimization models, of the model (2), not
requiring the SVD have been desired.

Shahid et al. in [4] proposed to formulate the RPCA as

minimize
S∈Rp×n

Qω(M − S) + µ‖S‖1, µ > 0, (3)

where Qω : Rp×n → R+ :

X 7→ω

2

p∑
i=1

n∑
j=1

W
(1)
i,j ‖X·,i −X·,j‖2

+
1− ω

2

p∑
i=1

n∑
j=1

W
(2)
i,j ‖(Xi,· −Xj,·)

⊤‖2, ω ∈ [0, 1],

and W
(1)
i,j ,W

(2)
i,j ≥ 0 are respectively designed by pairwise

distances, e.g. the Euclidean norm ‖·‖, between column vec-
tors and row vectors of M . In the model (3), we can expect
that suppression of Qω(M − ·) enhances the closenesses of
pair of column vectors ((M − S)·,i, (M − S)·,j) for large
W

(1)
i,j and pair of row vectors ((M − S)i,·, (M − S)j,·) for

large W
(2)
i,j and thus promotes a low-rankness of M − S

in the model (1). In the context of graph signal processing,
Qω(M − ·) can be interpreted as an instance of the so-called
graph regularizer (see (4) and [4], [14]). Indeed, Shahid et
al. in [4] experimentally shows that Qω(M − ·) can serve as
an approximation of rank(M − ·) in view of an eigenvalue
analysis. We remark that the model (3) can be viewed as a
kind of sparse regularized least square convex model, which
motivates us to improve further the model (3) by employing a
certain better nonconvex approximation of ‖·‖0 while keeping
the overall convexity for global optimization of such an
improved model (Note: If ‖S‖1 is replaced by ‖S‖0 in the
model (3), the problem becomes again NP-hard [15], [16].).

In this paper, to promote the sparsity than the model (3), we
propose a new graph regularized RPCA (GRPCA) by using
Qω(M − ·) together with a nonconvex sparsity promoting
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function. The proposed sparsity promoting nonconvex function
is designed, based on the generalized MC (GMC) penalty
[17] and the Linearly involved generalized-Moreau-enhanced
(LiGME) model [18] of which the latter was established
recently, by subtracting Moreau-Yosida like regularization 1

from ‖·‖1. The proposed GRPCA model can maintain its
overall convexity with a strategic parameter tuning found in
[17]. Moreover, for the proposed GRPCA model, we can
use proximal splitting type algorithms in [17], [18] which
can produce a sequence converging to a global minimizer of
the proposed model. A numerical experiment in a scenario
of foreground and background decomposition of a video
demonstrates that the proposed model recovers a low-rank
component more clearly than the model (3).

II. PRELIMINARIES

A. Notation
Let N, N+, R, R+, and R++ be the sets of all nonnegative

integers, positive integers, real numbers, nonnegative real num-
bers, and positive real numbers, respectively. ‖X‖2 is the max-
imum singular value of X ∈ Rp×n. The vectorization of a ma-
trix is vec: Rp×n → Rpn : X 7→ [X·,1

⊤, X·,2
⊤, · · · , X·,n

⊤]⊤.
Let (H, 〈·, ·〉H, ‖·‖H) and (K, 〈·, ·〉K, ‖·‖K) be finite dimen-
sional real Hilbert spaces, i.e. finite dimensional inner product
spaces over R, and let B(H,K) be the set of all bounded
linear operators from (H, 〈·, ·〉H, ‖·‖H) to (K, 〈·, ·〉K, ‖·‖K).
The positive definiteness and positive semidefiniteness of self-
adjoint operator X ∈ B(H,H) is denoted by X � OH
and X � OH, respectively. Let In ∈ Rn×n be the identity
matrix, and let Id be the identity operator. Let Γ0(H) be
the set of all proper lower semicontinuous convex functions
f : H → (−∞,∞]. The proximity operator of f ∈ Γ0(H) is
Proxf : H → H : x 7→ argminy∈H(f(y) + (1/2)‖x− y‖2H).

B. Graph Construction for GRPCA
Let G := (V,E) be an undirected graph, where V is the set

of vertices and E is the set of edges. The weighted adjacency
matrix W ∈ R|V |×|V |

+ is the symmetric matrix whose (i, j)th
entry is the weight of (vi, vj) if (vi, vj) ∈ E and 0 otherwise.
The weighted degree matrix D ∈ R|V |×|V |

+ is the diagonal
matrix whose (i, i)th entry is Di,i :=

∑|V |
j=1 Wi,j . The graph

Laplacian is L := D−W ∈ R|V |×|V |. Then, for any n ∈ N+

and X ∈ Rn×|V |, the following holds (See [20]):

1

2

|V |∑
i=1

|V |∑
j=1

Wi,j‖X·,i −X·,j‖2 = tr
(
XLX⊤) . (4)

We show below how to construct G from an |V |-tuple of
d-dimensional real vectors x := (x1, x2, . . . , x|V |) ∈ Rd ×
Rd × · · · ×Rd. In this paper, we employ the following graph
construction found in [4].

(i) Let K ∈ {1, 2, . . . , |V | − 1}, V = {1, 2, . . . , |V |}, and
E = ∅. For all i ∈ {1, 2, . . . , |V |}, let xi ∈ Rd be the
graph signal on i.

1See [19] for the origin of Yosida regularization for maximally monotone
linear operator.

(ii) For all i ∈ {1, 2, . . . , |V |}, compare ‖xi − xj‖(j ∈
{1, 2, . . . , |V |} \ {i}) and register (i, j) in E if xj is
in the K-nearest neighbors (KNN) from xi.

(iii) Define the weighted adjacency matrix by

Wi,j :=

{
exp(−∥xi−xj∥2

t2 ), if (i, j) ∈ E,

0, otherwise,

where t is the mean of distances of edges.
Let M ∈ Rp×n be a matrix whose each column vector is a

sample, let W (1) ∈ Rn×n
+ and L1 ∈ Rn×n be respectively the

weighted adjacency matrix and the graph Laplacian of a graph
constructed by samples, i.e. x := (M·,1,M·,2, . . . ,M·,n),
and let W (2) ∈ Rp×p

+ and L2 ∈ Rp×p be respectively the
weighted adjacency matrix and the graph Laplacian of a graph
constructed by features, i.e. x := (M1,·

⊤,M2,·
⊤, . . . ,Mp,·

⊤).
In Sec. IV, we use GSPBOX [21] for implementation of the
graph constructions.

C. Linearly involved Generalized-Moreau-Enhanced Model
Let us introduce the linearly involved generalized-Moreau-

enhanced (LiGME) model [18] as a unified extension of [10],
[17], [22], [23]. Inspired strongly by [17], the LiGME model
[18] has been proposed with µ > 0 as

minimize
x∈X

JΨB◦L(x) :=
1

2
‖y −Ax‖2Y + µΨB ◦ L(x),(5)

where (X , 〈·, ·〉X , ‖·‖X ), (Y, 〈·, ·〉Y , ‖·‖Y), (Z, 〈·, ·〉Z , ‖·‖Z),
and (Z̃, 〈·, ·〉Z̃ , ‖·‖Z̃) are finite dimensional real Hilbert
spaces, ProxγΨ(∀γ ∈ R++) is computable for coercive
Ψ ∈ Γ0(Z), domΨ = Z , Ψ ◦ (− Id) = Ψ, (A,L, B, y, µ) ∈
B(X ,Y)× B(X ,Z)× B(Z, Z̃)× Y × R++, and

ΨB(·) :=Ψ(·)−min
v∈Z

[
Ψ(v) +

1

2
‖B(· − v)‖2Z̃

]
is the generalized-Moreau-enhanced (GME) penalty function.
A specialization of the model (5) for (X ,Ψ) = (Rn, ‖·‖1) and
B ∈ Rm×n reproduces the model [17]:

minimize
x∈Rn

1

2
‖y −Ax‖2 + µ(‖·‖1)B(x), µ > 0.

As shown in Fact 1 (ii), we can bridge parametrically the gap
between ‖·‖0 and ‖·‖1 by introducing a parameter B ∈ Rm×n

in Moreau-Yosida like regularization of ‖·‖1 and subtracting
this regularization from ‖·‖1 [18]. In [18], a proximal splitting
algorithm to solve the general model (5) is also presented.

Fact 1 (See [18, Proposition 1, Example 2]). The LiGME
penalty ΨB ◦ L has the following properties:

(i) Suppose that

A∗A− µL∗B∗BL � OX , (6)

where (·)∗ denotes adjoint. Then the LiGME model
maintains the overall convexity, i.e. JΨB◦L ∈ Γ0(X ).

(ii) The LiGME penalty with L = Id, i.e. the GMC penalty
in [17], bridges the gap between ‖·‖0 and ‖·‖1 as

(‖·‖1)Om,n
◦ Id =‖·‖1,

lim
γ↓0

2

γ
(‖·‖1) 1√

γ Id ◦ Id =‖·‖0.
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III. A MOREAU ENHANCEMENT FOR GRPCA

A. GRPCA by Generalized-Moreau-Enhanced (GME) Model

To achieve the goal of RPCA, we can employ by [4] the
graph regularizer Qω(M − ·) as a low-rankness promoting
function in place of ‖·‖nuc. Since this graph regularizer is a
quadratic convex function, we can promote the sparsity of S
with the aid of a more faithful promoting function (than ‖·‖1)
to ‖·‖0. Along this strategy, the model (3) can be enhanced
naturally as

minimize
S∈Rp×n

Qω(M − S) + µ(‖·‖1)B ◦ Id(vec(S)), µ > 0,(7)

where B ∈ Rpn×pn. Clearly, the model (7) can be reformu-
lated as an instance of the model (5).

Let s := vec(S), let m := vec(M), and let A ∈ Rpn×pn

such that A⊤A = ω(L1 ⊗ Ip) + (1 − ω)(In ⊗ L2), where
X ⊗ Y ∈ Rpn×pn stands for the Kronecker product of X ∈
Rn×n and Y ∈ Rp×p. Then, by letting y := Am, the proposed
model (7) can be expressed as

minimize
s∈Rpn

J(∥·∥1)B (s) :=
1

2
‖y −As‖2 + µ(‖·‖1)B(s), (8)

where J(∥·∥1)B ∈ Γ0(Rpn) is achieved (See [17]) if

A⊤A− µB⊤B � ORpn . (9)

The model (7) reproduces (3) for B = ORpn (See [17]).

B. Optimization Algorithm

Under general overall convexity condition (6) for the model
(5), a proximal splitting type algorithm of guaranteed con-
vergence to a global minimizer was established in [18]. We
apply this algorithm with (Ψ,L, B) = (‖·‖1, Id,

√
θ/µA)(θ ∈

[0, 1]) to the model (8). Note that Selesnick [17] showed that
the overall convexity condition (9) is achieved by

B :=
√

θ/µA, θ ∈ [0, 1]. (10)

The algorithm in [18] solves primal problem and dual problem
simultaneously by introducing dual variables v and w.

Fact 2 (See [18, Theorem 1 with L = Id, Example 2]). For the
model (8) under the overall convexity condition (9), let H :=
Rpn × Rpn × Rpn and define TLiGME : H → H : (s,v,w) 7→
(ξ, ζ,η), with (σ, τ) ∈ R++ × R++, by

ξ :=

[
Ipn −

1

σ
(A⊤A− µB⊤B)

]
s− µ

σ
B⊤Bv − µ

σ
w

+
1

σ
A⊤Am,

ζ :=Proxµ
τ ∥·∥1

[
2µ

τ
B⊤Bξ − µ

τ
B⊤Bs+

(
Ipn −

µ

τ
B⊤B

)
v

]
,

η :=2ξ − s+w − Prox∥·∥1
(2ξ − s+w).

Then the following hold:
(i) argmins∈Rpn J(∥·∥1)B (s) = {s⋆ ∈ Rpn | (s⋆,v⋆,w⋆) ∈

Fix(TLiGME)}, where Fix(TLiGME) := {x ∈ H | x =
TLiGME(x)} is the set of all fixed points of TLiGME.

Algorithm 1 Algorithm for the models (7) and (3)

Input: (µ, ω, θ, κ, I, ε) ∈ R++×[0, 1]×[0, 1]×(1,∞)×N+×
R+

Output: (M − Sk+1, Sk+1) ∈ Rp×n × Rp×n

σ := (κ/2)[ω‖L1‖2 + (1− ω)‖L2‖2] + µ+ κ− 1
τ := (κ/2 + 2/κ)θ[ω‖L1‖2 + (1− ω)‖L2‖2] + κ− 1
(S0, V0,W0) ∈ Rp×n × Rp×n × Rp×n

for k = 0, 1, . . . , I − 1 do
Sk+1 ← Sk − µ

σWk − 1
σ{ω[(1− θ)Sk + θVk −M ]L1

+(1− ω)L2[(1− θ)Sk + θVk −M ]}
Vk+1 ← Proxµ

τ ∥·∥1
{Vk + θ

τ [ω(2Sk+1 − Sk − Vk)L1

+(1− ω)L2(2Sk+1 − Sk − Vk)]}
Wk+1 ← 2Sk+1−Sk+Wk−Prox∥·∥1

(2Sk+1−Sk+Wk)
if ‖(vec(Sk+1), vec(Vk+1), vec(Wk+1))

−(vec(Sk), vec(Vk), vec(Wk))‖P < ε then
break

end if
end for

(ii) Choose (σ, τ, κ) ∈ R++ × R++ × (1,∞) such that

σIpn − (κ/2)A⊤A− µIpn � ORpn ,

τ ≥ (κ/2 + 2/κ)µ‖B‖22.
(11)

Then, for

P :=

 σIpn −µB⊤B −µIpn
−µB⊤B τIpn ORpn

−µIpn ORpn µIpn

 � OH,

(H, 〈·, ·〉P, ‖·‖P) is a real Hilbert space, where
〈·, ·〉P : H ×H → R : (x, y) 7→ 〈x,Py〉H and ‖·‖P :=√
〈·, ·〉P. TLiGME is κ/(2κ− 1)-averaged nonexpansive

in (H, 〈·, ·〉P, ‖·‖P).
(iii) Suppose that (σ, τ, κ) ∈ R++ × R++ × (1,∞) satisfies

(11). Then, for any (s0,v0,w0) ∈ H, the sequence
(sk,vk,wk)k∈N ⊂ H generated by

(sk+1,vk+1,wk+1) := TLiGME(sk,vk,wk) (12)

converges to (s⋆,v⋆,w⋆) ∈ Fix(TLiGME) such that

s⋆ ∈ argmin
s∈Rpn

J(∥·∥1)B (s).

For the parameters (σ, τ, κ) satisfying (11), we use

σ :=(κ/2)[ω‖L1‖2 + (1− ω)‖L2‖2] + µ+ κ− 1,

τ :=(κ/2 + 2/κ)θ[ω‖L1‖2 + (1− ω)‖L2‖2] + κ− 1,

which is a variant of the example in [18, Theorem 1]. Since
we vectorized S ∈ Rp×n into s ∈ Rpn in the model (8), we
have to handle the large size matrices A⊤A,B⊤B ∈ Rpn×pn

in the algorithm (12). Fortunately, since Proxγ∥·∥1
: Rp×n →

Rp×n : [Xi,j ] 7→ [sgn(Xi,j)max{0, |Xi,j | − γ}](γ ∈ R++),
which is the so-called soft-thresholding, is entrywise, we can
matricize (sk,vk,wk) ∈ H in (12) into (Sk, Vk,Wk) ∈
Rp×n × Rp×n × Rp×n in Algorithm 1. We remark that
Algorithm 1 is scalable because it does not require any SVD
and matrix inversion at each iteration.
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Fig. 1: Foreground and background decomposition of a video. Full size and cropped frames are respectively shown in the first
and second rows. The first and fourth columns show the original frames, and the second and third columns show the estimated
low-rank components. We used the original frame 1683, just after the bus passed by, as the (estimated) ground truth of the
low-rank component of the frame 1669.

Note that the model (3) can also be solved by Algorithm
1 with θ = 0, i.e. B = ORpn . Moreover, since the proposed
model (8) with L = Id is rather simple compared with the
model (5), the model (8) can also be solved by [17, Proposition
15]: for any (θ, s0,v0) ∈ [0, 1)× Rpn × Rpn,

sk+1 :=Proxνµ∥·∥1
(sk − νA⊤A(sk + θ(vk − sk)−m)),

vk+1 :=Proxνµ∥·∥1
(vk − νθA⊤A(vk − sk)),

(13)

where ν := ν′/(max{1, θ/(1 − θ)}‖A⊤A‖2)(ν′ ∈ (0, 2))
is the available stepsize to guarantee limk→∞ sk = s⋆ ∈
argmins∈Rpn J(∥·∥1)√θ/µA

(s). We remark that, in the model

(8) with B :=
√
θ/µA in (10), the larger θ ∈ [0, 1] enhances

more the nonconvexity of (‖·‖1)B (Note: the algorithm (13)
is not applicable to θ = 1 achieving (9) while Algorithm 1 is
applicable to any θ ∈ [0, 1]).

IV. NUMERICAL EXPERIMENTS

A. Foreground and Background Decomposition of a Video

We applied Algorithm 1 to GRPCA-GME (7), i.e. the
proposed GRPCA with a GME penalty, and GRPCA-L1 (3)
as its special case with θ = 0, in a scenario of foreground
and background decomposition of a video. In this scenario,
a static background and a dynamic foreground can be seen
as a low-rank component and a sparse component, respec-
tively. Note that this scenario corresponds to a challenge for
estimation of the hidden image information covered by an
obstacle, i.e. the bus. We used the scene just after the bus
passed by as the (estimated) ground truth of the low-rank
component. Following [4], we used the first 1000 frames
of a video in [24], which was found at http://vis-www.cs.
umass.edu/∼narayana/castanza/I2Rdataset/, converted them to
grayscale, and rescaled a frame to h × w = 64 × 80.

We defined the matrix M ∈ Rhw×1000, whose ith column
M·,i ∈ Rhw is the vectorization of the ith frame of a video.
As the tunable parameters in Sec. II-B and Algorithm 1, we
used K = 30 for L1, K = 10 for L2, (µ, ω, κ, I, ε) =
(0.1, 0.9, 1.1, 104, 0), (S0, V0,W0) = (Op,n,Op,n,Op,n) for
both models, θ = 0 for GRPCA-L1, and θ = 0.3 for GRPCA-
GME. Among these parameters, (µ, ω) = (0.1, 0.9) is first
chosen from {0.01, 0.05, 0.1, 0.5} × {0.7, 0.8, 0.9} to achieve
the least squared error between “the estimated background (by
GRPCA-L1) from frame 1669” and “the original frame 1683
(just after the bus passed by)”. Then the parameter θ = 0.3 for
GRPCA-GME is chosen from {0, 0.1, . . . , 0.9, 1} to achieve
the least squared error. As seen in the second row in Fig. 1,
GRPCA-GME seems to estimate the hidden image information
(by the bus) more clearly than GRPCA-L1.

B. Comparison of Estimation Accuracy

By recalling that the original goal of RPCA in [2] is
estimation of a low-rank matrix L⋆ and a sparse matrix S⋆
from a given matrix M(= L⋆ + S⋆). In this subsection,
we compare quantitatively the models (3) and (7) from the
view point of estimation of L⋆. Following [3, Sec. 5], we
set L⋆ := X1X

⊤
2 ∈ R100×100 and S⋆ ∈ R100×100, where

all entries of X1, X2 ∈ R100×5 are drawn from N (0, 1),
and randomly chosen 1000 nonzero entries of S⋆ are drawn
from the uniform distribution on (−500, 500). As the tunable
parameters in Sec. II-B, Algorithm 1, and (13), we used
(K,ω, κ, I, ε, ν′) = (10, 0.5, 1.1, 103, 0, 1.9), (µ, θ) = (3, 0)
for GRPCA-L1, (µ, θ) ∈ {13} × {0.2, 0.8, 1.0} for GRPCA-
GME, (S0, V0,W0) = (Op,n,Op,n,Op,n) for Algorithm 1,
and (s0,v0) = (0,0) for the algorithm (13). Among these
parameters, (µ, θ) = (3, 0) for GRPCA-L1 is chosen from
{1, 2, . . . , 19, 20}×{0} to achieve the least squared error from
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(a) θ = 0.2.

(b) θ = 0.8.

(c) θ = 1.0.

Fig. 2: The relative error ‖M − Sk − L⋆‖F /‖L⋆‖F , where
‖·‖F is the Frobenius norm, and the value J(∥·∥1)√θ/µA

(sk).

L⋆ just after 5000 iterations by Algorithm 1. For GRPCA-
GME, (µ, θ) = (13, 0.2) is chosen from {1, 2, . . . , 19, 20} ×
{0.2, 0.4, 0.6, 0.8, 1} to achieve the least squared error. As
seen in Fig. 2, GRPCA-GME outperforms GRPCA-L1 in
terms of the relative error. However, in view of [3, Table
1 (DR-PCP)], both models (3) and (7) do not seem to
achieve comparable accuracies as estimations of L⋆ in terms
of the relative error in Fig. 2. We also compared convergence
performances of Algorithm 1 and the algorithm (13). As seen
in Fig. 2, the algorithm (13) converges faster than Algorithm
1 for small θ = 0.2, and Algorithm 1 converges faster than
the algorithm (13) for large θ = 0.8. Fig. 2(c) shows that
Algorithm 1 is applicable to θ = 1 (See the end of Sec. III).

V. CONCLUSION

In this paper, we have proposed a sparsity-enhanced model
with a GME penalty for GRPCA. The proposed GRPCA
model uses a nonconvex GME penalty while maintaining the
overall convexity. We also show that a proximal splitting type
algorithm in [18] can be used to obtain a global minimizer of
the proposed model. A numerical experiment in a scenario
of foreground and background decomposition of a video
demonstrates the efficacy of the proposed GRPCA model.

REFERENCES

[1] I. T. Jolliffe, Principal Component Analysis. Springer, 1986.
[2] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component

analysis?” J. ACM, vol. 58, no. 3, Jun. 2011.
[3] S. Gandy and I. Yamada, “Convex optimization techniques for the

efficient recovery of a sparsely corrupted low-rank matrix,” Journal of
Math-for-Industry, vol. 2, no. 5, pp. 147–156, 2010.

[4] N. Shahid, N. Perraudin, V. Kalofolias, G. Puy, and P. Vandergheynst,
“Fast robust PCA on graphs,” IEEE Journal of Selected Topics in Signal
Processing, vol. 10, no. 4, pp. 740–756, 2016.

[5] Z. Lin, M. Chen, and Y. Ma, “The augmented Lagrange multiplier
method for exact recovery of corrupted low-rank matrices,” arXiv
preprint arXiv:1009.5055, 2010.

[6] X. Yuan and J. Yang, “Sparse and low-rank matrix decomposition via
alternating direction method,” Pacific Journal of Optimization, vol. 9,
no. 1, pp. 167–180, 2013.

[7] P. L. Combettes and J. C. Pesquet, “A Douglas-Rachford splitting ap-
proach to nonsmooth convex variational signal recovery,” IEEE Journal
of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 564–574, 2007.

[8] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank
tensor recovery via convex optimization,” Inverse Problems, vol. 27,
no. 2, p. 025010, jan 2011.

[9] T. Mizoguchi and I. Yamada, “Hypercomplex principal component
pursuit via convex optimization,” in Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC),
Nov. 2018, pp. 579–586.

[10] C.-H. Zhang, “Nearly unbiased variable selection under minimax con-
cave penalty,” The Annals of Statistics, vol. 38, no. 2, pp. 894 – 942,
2010.

[11] J. Wang, M. Wang, X. Hu, and S. Yan, “Visual data denoising with a
unified schatten-p norm and ℓq norm regularized principal component
pursuit,” Pattern Recognition, vol. 48, no. 10, pp. 3135–3144, 2015.

[12] S. Wang, D. Liu, and Z. Zhang, “Nonconvex relaxation approaches to
robust matrix recovery.” in IJCAI. Citeseer, 2013, pp. 1764–1770.

[13] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
I. Yamazaki, “The singular value decomposition: Anatomy of optimizing
an algorithm for extreme scale,” SIAM Review, vol. 60, no. 4, pp. 808–
865, 2018.

[14] Z. Zhang and K. Zhao, “Low-rank matrix approximation with manifold
regularization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 7, pp. 1717–1729, 2013.

[15] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995.

[16] T. T. Nguyen, C. Soussen, J. Idier, and E. Djermoune, “Np-hardness of
ℓ0 minimization problems: revision and extension to the non-negative
setting,” in International conference on Sampling Theory and Applica-
tions (SampTA), 2019, pp. 1–4.

[17] I. Selesnick, “Sparse regularization via convex analysis,” IEEE Trans-
actions on Signal Processing, vol. 65, no. 17, pp. 4481–4494, 2017.

[18] J. Abe, M. Yamagishi, and I. Yamada, “Linearly involved generalized
Moreau enhanced models and their proximal splitting algorithm under
overall convexity condition,” Inverse Problems, vol. 36, no. 3, p. 035012,
Feb. 2020.

[19] K. Yosida, “On the differentiability and the representation of one-
parameter semi-group of linear operators,” Journal of the Mathematical
Society of Japan, vol. 1, no. 1, pp. 15–21, 1948.

[20] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation,” Neural Computation, vol. 15, no. 6,
pp. 1373–1396, 06 2003.

[21] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal
processing on graphs,” 2016.

[22] L. Yin, A. Parekh, and I. Selesnick, “Stable principal component pursuit
via convex analysis,” IEEE Transactions on Signal Processing, vol. 67,
no. 10, pp. 2595–2607, 2019.

[23] J. Abe, M. Yamagishi, and I. Yamada, “Convexity-edge-preserving sig-
nal recovery with linearly involved generalized minimax concave penalty
function,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), May 2019, pp. 4918–4922.

[24] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, “Statistical modeling of com-
plex backgrounds for foreground object detection,” IEEE Transactions
on Image Processing, vol. 13, no. 11, pp. 1459–1472, 2004.

2133


