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Abstract—In group sparse regularized least squares problem,
the ℓ2,1-norm is widely used to approximate convexly the ℓ2,0
pseudo-norm, but it causes largely biased estimates which are
not desired for many applications. In this paper, we propose
a nonconvex group sparse regularizer which can be seen as a
generalized Moreau enhancement of the ℓ2,1-norm. The proposed
nonconvex regularizer promotes group sparsity more effectively
than the ℓ2,1-norm and can achieve the overall convexity of the
regularized least squares model. We also propose to apply this
model to the group sparse classification problem. The proposed
classifier can utilize the label information of training samples in
terms of the grouping information with smaller bias than the
ℓ2,1-norm, and thus is expected to improve the group sparse
classification performance. Experimental results demonstrate
that the proposed classifier certainly improves the performance
of group sparse classification with ℓ2,1 regularizer, especially for
unbalanced training data set.

Index Terms—group sparsity, generalized Moreau enhance-
ment, sparse representation based classification, proximal split-
ting algorithm

I. INTRODUCTION

With the development of compressive sensing [1], [2],
sparse representation has become an important tool for signal
processing and machine learning [3]. It is based on the
assumption that the signal of our interest can be represented
as a linear combination of only a few columns in a dictionary
matrix. In many applications, signals usually have specific
sparsity structures. For example, in dynamic MRI [4], [5],
DNA microarrays [6], hyperspectral unmixing [7], [8] and face
recognition [9], the group sparsity structure has been exploited,
that is, the ideal solution should have a natural grouping of
its components, and the components within each group are
likely to be either all zeros or all nonzeros [10]. Generally,
grouping information is pre-defined based on prior knowledge
of a specific problem.

Let x = [xT
1 ,x

T
2 , · · · ,xT

G]
T ∈ Rn represent the group

structure of x, where G is the number of groups. The group
sparsity of x can be measured by the ℓ2,0 pseudo-norm, i.e.,
∥x∥2,0 = ∥(∥x1∥2, ∥x2∥2, · · · , ∥xG∥2)∥0, where ∥ · ∥2 is the
Euclidean norm, and ∥·∥0 is the ℓ0 pseudo-norm which counts
the number of nonzero entries in the vector. The underlying
data can usually be represented approximately by a linear
regression model y = Ax+ε, where y ∈ Rm, A ∈ Rm×n are
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known, and ε ∈ Rm is an unknown noise vector. The group
sparse regularized least squares problem can be modeled as

minimize
x∈Rn

1

2
∥y −Ax∥22 + λ∥x∥2,0, (1)

where λ > 0 is the regularization parameter. Due to the
fact that the combinatorial ℓ0 minimization is an NP-hard
problem [11], most of the studies choose ℓ2,1 as a convex
approximation of ℓ2,0. More specifically, the widely used ℓ2,1-
regularized least squares problem is defined as follows,

minimize
x∈Rn

1

2
∥y −Ax∥22 + λ∥x∥2,1, (2)

where ∥x∥2,1 =
∑G

i=1 ∥xi∥2. This model is known as Group
Lasso (least absolute shrinkage and selection operator) [12] in
statistics. Although ℓ2,1 is the convex relaxation of ℓ2,0 and (2)
can be efficiently solved through convex programming tools
[13], it does not promote group sparsity as effective as ℓ2,0
mainly because of the large bias of ℓ2,1. In consideration of
the good performance of nonconvex regularizers, some authors
choose penalties such as group SCAD (smoothly clipped
absolute deviation) [14], [15], group MCP (minimax concave

penalty) [14], [15], ℓp,q (∥x∥p,q :=
(∑G

i=1 ∥xi∥qp
)1/q

, 0 <
q < 1 ≤ p) [16] and ℓ2,0 [17] for group sparse problems.
However, these methods lose the overall convexity of the
optimization problems and their algorithms have no guarantee
of convergence to a global minimizer.

In this paper, in order to suppress the bias in the ℓ2,1-norm
as well as to achieve the overall convexity of the group sparse
regularized least squares model, we propose a generalized
Moreau enhanced ℓ2,1 penalty based on linearly involved
generalized-Moreau-enhanced (LiGME) model [18] (see Sec-
tion II-A). We also propose to apply it to the group sparse
classification (GSC) [19]–[22] which basically assigns the test
sample to a class based on a group sparse representation with
training samples (see Section II-B). By the proposed group
sparse classifier, it is expected to improve the classification
performance of the widely used ℓ2,1 penalty based classifiers
while maintaining the overall convexity of the optimization
model.

The reminder of this paper is as follows. Section II presents
a brief review on LiGME and GSC. In Section III, the
proposed group sparse representation method is introduced in
details. Section IV discusses the application to group sparse
classification problem. Conclusion is presented in Section V.
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II. REVIEW OF PREVIOUS WORK

A. Linearly involved generalized-Moreau-enhanced model

To promote sparsity or low-rankness more effectively than
the convex envelopes of the direct discrete measures such
as ℓ0 and matrix rank, many efforts have been devoted
to utilizing nonconvex regularizations while maintaining the
overall convexity of the regularized least squares problems at
the same time [18], [23]–[27]. Among them, linearly involved
generalized-Moreau-enhanced (LiGME) model [18] provides a
general framework to incorporate linear operators into a class
of nonconvex penalties and builds parametric bridges between
the direct discrete measures and their convex envelopes.

The LiGME model constructs nonconvex penalties for such
regularized least squares while maintaining the convexity of
the cost function. The model is given as the minimization of

JΨB◦L : X → R : x 7→ 1

2
∥y −Ax∥2Y + λΨB ◦ L(x), (3)

where (X , ⟨·, ·⟩X , ∥·∥X ), (Y, ⟨·, ·⟩Y , ∥·∥Y), (Z, ⟨·, ·⟩Z , ∥·∥Z),
(Z̃, ⟨·, ·⟩Z̃ , ∥ · ∥Z̃) are finite dimensional real Hilbert spaces,
Ψ ∈ Γ0(Z) is coercive with domΨ = Z 1, B ∈ B(Z, Z̃),
L ∈ B(X ,Z), (A,L, λ) ∈ B(X ,Y)× B(X ,Z)× R+ and

ΨB(·) := Ψ(·)−min
v∈Z

[
Ψ(v) +

1

2
∥B(· − v)∥2Z̃

]
. (4)

We use the notations in [18] for specific ΨB(·) in (4). For
example, if Ψ = ∥ · ∥1, ΨB(·) is denoted by (∥ · ∥1)B . In this
case, J(∥·∥1)B◦Id reproduces the model in [25], where Id is the
identity operator. Although ΨB in (4) can be nonconvex for
B ̸= OX , the cost function JΨB◦L in (3) is convex if

A∗A− λL∗B∗BL ≽ OX , (5)

where A∗ denotes the adjoint of A and OX ∈ B(X ,X ) is
the zero operator. In particular, if Ψ is a certain norm over the
vector space Z , (5) becomes a necessary and sufficient condi-
tion of the overall convexity. In the case of L = Id, the overall
convexity condition is satisfied by B =

√
θ/λA (0 ≤ θ ≤ 1)

[25]. Furthermore, for any B satisfying the overall convexity
condition (5), if Ψ ∈ Γ0(Z) is coercive, even symmetry and
prox-friendly 2 with domΨ = Z , [18, Theorem 1] provides a
proximal splitting algorithm of guaranteed convergence to a
globally optimal solution of model (3).

B. Group sparse classification

For a classification problem, suppose that there are G classes
of subjects, and let A = [A1,A2, · · · ,AG] ∈ Rm×n be
the matrix of n columns of training samples, where Ai =
[ai1,ai2, · · · ,aini ] ∈ Rm×ni is the subset of the training
samples from class i, aij represents the j-th training sample
from the i-th class, ni is the number of training samples in
class i, and n =

∑G
i=1 ni is the number of training samples.

1Γ0(Z) is the set of proper lower semicontinuous convex function from Z
to (−∞,∞]; a function g : Z → (−∞,∞] is called coercive if g(x) →
∞ (∥x∥Z → ∞); domΨ denotes the domain of function Ψ.

2Even symmetry means Ψ ◦ (−Id) = Ψ; prox-friendly means ProxγΨ :
Z → Z : x 7→ arg min

v∈Z
{Ψ(v)+ 1

2γ
∥v−x∥2Z} is computable (∀γ ∈ R++).

Sparse representation based classification (SRC) is first
proposed by Wright et al. [28] for face recognition. It rep-
resents the test sample as a sparse linear combination of all
training samples, and then classifies by the obtained sparse
coefficients. Given a test sample y ∈ Rm, it is represented
by y = Ax, where x ∈ Rn is the desired sparse coeffi-
cient vector. The naive SRC is modeled as minimization of
1
2∥y − A(·)∥22 + λ∥ · ∥0. However, this problem is NP-hard
[11]. Most researchers use ∥ · ∥1, in place of ∥ · ∥0 in the
model, since it is the largest convex minorant of ∥ · ∥0 around
zero. The relaxed model is the well-known Lasso [29].

In fact, for the classification task, the test sample is desired
to be represented with training samples from as few classes
as possible rather than few samples achievable by SRC. For
pursuing the sparsity in the group form of more discrimina-
tive information than SRC, group sparse classification (GSC)
approach is proposed [19], [20]. The naive GSC is to

find x̂ := arg min
x∈Rn

1

2
∥y −Ax∥22 + λ∥x∥2,0. (6)

After obtaining the solution x̂, we can find the class of test
sample y as the class that best approximates y by its training
data. More precisely, y is assigned to class

i⋆ = argmin
i

∥y −Aix̂i∥2. (7)

Exactly for the same reason about convexity in SRC, ∥·∥2,1
has been used as an approximation of ∥ · ∥2,0 in (6) [19],
[20], then the relaxed model becomes Group Lasso in (2).
However, ℓ2,1 penalty not only suppresses the number of
selected classes (nonzero groups in x), but also suppresses
significant nonzero coefficients within classes. The later may
lead to biased estimates for high-amplitude elements and
adversely affect the performance. In the application of face
recognition, for tighter approximation of ℓ2,0, [21] employs
a nonconvex surrogate function ℓ2,q (0 < q < 1) while [22]
utilizes a MCP induced group sparse penalty at a cost of losing
the convexity of the minimization problem. How to design a
penalty that induces less bias and approximates ℓ2,0 better than
ℓ2,1 while ensuring the overall convexity becomes a challenge.

In the next section, we present a less biased group sparsity
inducing function and propose a convex model that can be
used for classification problems to addresses the challenge.

III. GENERALIZED MOREAU ENHANCEMENT OF
ℓ2,1-NORM FOR GROUP SPARSE REPRESENTATION

Let B ∈ Rl×n, x = [xT
1 ,x

T
2 , · · · ,xT

G]
T ∈ Rn and

v = [vT
1 ,v

T
2 , · · · ,vT

G]
T ∈ Rn, where xi,vi ∈ Rni (i =

1, 2, · · · , G). Under the framework of LiGME, we can define
our group sparse regularizer (∥ · ∥2,1)B : Rn → R as follows,

(∥ · ∥2,1)B (x) =
G∑
i=1

∥xi∥2

− min
v∈Rn

{
G∑
i=1

∥vi∥2 +
1

2
∥B(x− v)∥22

}
.

(8)
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Proposition 1. (The group sparse penalty term λ (∥ · ∥2,1)B
can bridge the gap between ∥·∥2,0 and ∥·∥2,1.) Let B = 1√

γ In

for γ ∈ R++ and λ = 2
γ , where In is the n-dimensional

identity matrix. Then, for any x ∈ Rn,

lim
γ↓0

2

γ
(∥ · ∥2,1) 1√

γ In
(x) = ∥x∥2,0. (9)

Together with the fact that (∥ · ∥2,1)On
(x) = ∥x∥2,1, the

penalty term λ (∥ · ∥2,1)B can serve as a parametric bridge
between ∥ · ∥2,0 and ∥ · ∥2,1.

Proof. The penalty term λ (∥ · ∥2,1)B reproduces

2

γ
(∥ · ∥2,1) 1√

γ In
: Rn → R

: [xT
1 ,x

T
2 , · · · ,xT

G]
T 7→

G∑
i=1

2

γ
ψi(xi),

(10)
where ψi(xi) = ∥xi∥2 − min

vi∈Rni

{
∥xi∥2 + 1

2γ ∥xi − vi∥22
}

,

i = 1, · · · , G. By [30, Example 24.20], there is

2

γ
ψi(xi) =


2

γ
∥xi∥2 −

1

γ2
∥xi∥22, if ∥xi∥2 ≤ γ,

1, otherwise,
(11)

which satisfies

lim
γ↓0

2

γ
ψi(xi) =

{
0, if ∥xi∥2 = 0,

1, otherwise.
(12)

Therefore, limγ↓0 λ (∥ · ∥2,1) 1√
γ In

= limγ↓0
∑G

i=1 λψi(xi) =∑G
i=1 |∥xi∥2|0 = ∥x∥2,0, where |t|0 = 0 if t = 0 and |t|0 = 1

otherwise.

Remark 1. Since the ℓ2,1-norm is in fact the combination
of an ℓ2-norm within class and an ℓ1-norm across classes,
there are three approaches to get a generalized Moreau
enhanced group sparse penalty. In addition to (8), the other
two approaches are: (i) applying LiGME strategy only on the
inner ℓ2 , while keeping the outer ℓ1 unchanged; (ii) keeping
the inner ℓ2 maintained while only performing generalized
Moreau enhanced operation on the outer ℓ1. All these three
approaches can bridge the gap between ∥ · ∥2,0 and ∥ · ∥2,1,
as they are equal when B is a scalar multiple of the identity
matrix. Here we omit detailed analysis. A penalty with B = In

is used in [31] for multiple measurement vector problem.

For a group sparse regularized least squares problem, the
optimization model with penalty (8) to estimate the vector x
with group sparsity structure can be formulated as

minimize
x∈Rn

f(x) :=
1

2
∥y −Ax∥22 + λ (∥ · ∥2,1)B (x). (13)

Note that the proposed model (13) reproduces Group Lasso
model (2) in the case of B = On. By (5), the cost function
f(x) in (13) is convex if ATA − λBTB ≽ On. Since
the proximal splitting algorithm in [18, Theorem 1] can
be implemented for a general B that meets the convexity
condition, by checking

Fig. 1. A toy example of two different representations. A query image y (star)
can be well represented by samples a1,1 and a1,2 of one class (triangle). It
can also be well represented by samples a2,1 and a3,1 of another two classes
(diamond and circle respectively).

1) ∥ · ∥2,1 ∈ Γ0(Rn) is coercive;
2) ∥ · ∥2,1 is even symmetry, i.e. ∥ · ∥2,1 ◦ (−Id) = ∥ · ∥2,1;
3) ∥ · ∥2,1 is prox-friendly, where the proximity operator is

given by

Proxγ∥·∥2,1
: Rn → Rn

x 7→
{(

1− γ

max{∥xi∥2, γ}

)
xi

}G

i=1

;

(14)
4) dom (∥ · ∥2,1) = Rn,

it can be utilized to solve optimization problem (13). Our
method can be applied to many different applications that
conform to group sparsity structure. We give the algorithm
for the application of classification in the next section.

IV. APPLICATION TO GROUP SPARSE CLASSIFICATION

A. Proposed algorithm for group sparse classification

As discussed in Section II-B, ℓ2,1-norm is the most fre-
quently adopted regularizer in GSC methods. In this section,
we argue that its tendency to yield biased estimates for
high-amplitude coefficients might lead to undesirable results.
A toy example in Fig. 1 illustrates the potential risk of
the ℓ2,1 regularizer, where four training samples (i.e., a1,1,
a1,2, a2,1, a3,1) from three different classes (represented
by triangle, diamond and circle respectively) and a query
sample y (represented by star) are shown. The query sample
can be well represented by the samples from triangle, i.e.,
y = 0.95a1,1 + 0.04a1,2. It can also be well represented by
a combination of one sample from diamond and one sample
from circle as y = 0.50a2,1 + 0.40a3,1.

Table I gives the value of different penalties (regularization
parameter equals 1) by the above two representations. As
we can see, ℓ0 penalty cannot distinguish between the two
representations in this case whereas ℓ2,0 penalty certainly
chooses the first one, which demonstrates the advantage of
GSC over SRC. However, ℓ2,1 penalty chooses the second
one, the representation by samples from two classes instead
of a single class, which is undesirable for GSC framework.
This is due to that ℓ2,1 penalty refuses the large coefficient in
the first representation, but accepts the two small coefficients
in the second one.
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TABLE I
PENALTY TERM VALUES OF REPRESENTATIONS IN FIG. 1

Penalty ℓ0 ℓ1 ℓ2,0 ℓ2,1 ℓ2,1/2 (∥ · ∥2,1)I2

First 2 0.99 1 0.951 0.951 0.50
Second 2 0.90 2 0.90 1.794 0.695

Although ℓ2,0 and its approximation ℓ2,1/2 succeed in this
example, they lead to nonconvex optimization. Thus we con-
sider the proposed penalty in (8). For example, (∥ · ∥2,1) 1√

γ I2

will prefer the first representation in Fig. 1 as long as γ ≤ 4.85.
This also reflects its role as a bridge between ℓ2,1 and ℓ2,0.

Since GSC relies on the group structure of training samples,
when the training set is unbalanced, the influence caused by
bias of ℓ2,1 penalty would be amplified. For example, a test
sample y can be well represented by a combination of all ni
samples from class i, i.e., y = Aixi and ∥xi∥1 = 1, where
xi ∈ Rni . To simplify the expression, suppose that the number
of samples in this class is doubled by duplication, and then
the training set of class i becomes Ãi = [Ai,Ai] ∈ Rm×2ni .
Obviously, y can also be well represented by y = Ãix̃i, where
x̃i = [ηxT

i , (1− η)xT
i ]

T ∈ R2ni (0 ≤ η ≤ 1) and ∥x̃i∥1 = 1.
However, ∥xi∥22 −∥x̃i∥22 = 2η(1− η)∥xi∥22 ≥ 0. That is, ℓ2,1
penalty value of the first representation (before duplication)
is greater than that of the second one (after duplication). This
indicates that the group size will affect the value of ℓ2,1 penal-
ty. Therefore, when training set is unbalanced, ℓ2,1 penalty
is unfair for classes of different sizes. The representation by
groups with few samples is more likely to have a large ℓ2,1
penalty value. As ℓ2,1 penalty tends to refuse large coefficients,
this bias can easily cause misclassification, especially when the
correct class has relatively few samples. Note that ℓ2,0 penalty
does not have such unfairness, it is independent of group size.

We expect to improve the performance of Group Lasso on
unbalanced training sets by replacing the ℓ2,1 penalty with
(∥ · ∥2,1)B , that is, by using model (13). Considering that the
proximal splitting algorithm in [18] can be utilized for any B
satisfying ATA−λBTB ≽ On, such as B =

√
θ/λA (0 ≤

θ ≤ 1), we apply it to model (13) for classification problem
(note that the algorithm in [25] cannot be applied to the case of
θ = 1, even though it satisfies the overall convexity condition).
Our algorithm is guaranteed to converge to a globally optimal
solution of the problem (13) under overall convexity condition.
It is summarized in Algorithm 1. Compared with proximal
gradient method for Group Lasso model (2) [32], Algorithm
1 requires at each update only one additional computation for
Proxγ∥·∥2,1

in (14).

B. Experiments

In order to investigate the influence by bias of Group Lasso
on the classification problem of unbalanced training set, and to
see the performance improvement by the proposed method in
such case, we conducted the experiments on a relatively simple
dataset. The USPS handwritten digit database [33] has 11,000
samples of digits ”0” through ”9” (1,100 samples per class).
The dimension of each sample is 16×16. In our classification
experiments, the number of training samples for each class are

Algorithm 1 The proposed group sparsity enhanced classifi-
cation algorithm

Input: A matrix of training samples A = [A1,A2, · · · ,AG] ∈ Rd×n grouped by
class information, and a test sample vector y ∈ Rn;
1. Initialization: Let (x(0),u(0),w(0)) ∈ Rn × Rn × Rn;
Choose (σ, τ, κ) ∈ R++ × R++ × (1,+∞) satisfying 3

σIn −
κ

2
A

T
A ≽ On and τ ≥

(
κ

2
+

2

κ

)
λ∥B∥2

spec,

where ∥ · ∥spec is the spectral norm calculating the largest singular value of a matrix.
2. For k = 0, 1, 2, · · · , compute

x
(k+1)

=
[
In −

1

σ
(A

T
A − λB

T
B)

]
x

(k) −
λ

σ
B

T
Bu

(k) −
λ

σ
w

(k)
+

1

σ
A

T
y,

u
(k+1)

=Prox λ
τ

∥·∥2,1

[ 2λ
τ

B
T
Bx

(k+1) −
λ

τ
B

T
Bx

(k)
+ (In −

λ

τ
B

T
B)u

(k)
]
,

w
(k+1)

=
(

Id − Prox∥·∥2,1

)(
2x

(k+1) − x
(k)

+ w
(k)

)
,

until the stopping criterion is fulfilled.
3. Compute the class label i⋆ of y by

i
⋆
= argmin

i
∥y − Aix

(k+1)
i ∥2.

Output: The class label i⋆ corresponding to y.

not necessarily equal, which varies from 5 to 50 (the size of
test set is fixed to 50 images per class).

We compared the proposed method with Lasso (SRC
scheme) [28] and Group Lasso (GSC scheme) [20]. In order to
achieve the overall convexity, we set B =

√
θ/λA and fix θ =

0.9 for proposed method. We set κ = 1.1, σ = ∥(κ/2)ATA+
λI∥spec + (κ − 1) and τ = (κ/2 + 2/κ)λ∥B∥2spec + (κ − 1).
Lasso is implemented following [28], and Group Lasso is
implemented by Algorithm 1 since the proposed model (13)
with B = On reproduces Group Lasso by setting θ = 0. The
initial estimate is set as (x(0),u(0),w(0)) = (0n,0n,0n), and
the stopping criterion is set to either ∥(x(k),u(k),w(k)) −
(x(k+1),u(k+1),w(k+1))∥2 < 10−4 or steps reaching 10,000.

Fig. 2 shows an example of unbalanced training set (digits
”0” through ”4” have 5 samples per class and ”5” through ”9”
have 25 samples per class). The input is an image of digit ”0”
which was misclassified into digital ”6” by Group Lasso while
classified correctly by proposed method. In Fig. 2, the obtained
coefficient vectors by Group lasso and proposed method (both
with λ = 4) are illustrated respectively, and some samples
corresponding to nonzero coefficients are also displayed. It
can be seen that in Group Lasso, the samples from digit
”6” made the greatest contribution to the representation, and
samples from ”5” and ”0” also made small contribution. In our
method, samples from the correct class ”0” made the biggest
contribution and led to correct result. This is reasonable,
because our method did not excessively suppress the high
value coefficients, whereas ℓ2,1 suppressed them too much.
This large bias made the coefficients of the correct class cannot
be large enough, and thus can easily lead to misclassification.

Table II summarizes the recognition accuracy of different
methods (training set setting: digits ”0” through ”4” have
β samples per class and ”5” through ”9” have α samples

3For example, any κ > 1, σ = ∥(κ/2)ATA + λI∥spec + (κ − 1) and
τ = (κ/2 + 2/κ)λ∥B∥2spec + (κ− 1) can satisfy (1).
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Fig. 2. Estimated sparse coefficients x̂.

TABLE II
RECOGNITION RESULTS ON THE USPS DATABASE

Method
Training set size (α = maxi{ni}, β = mini{ni})

α 10 25 50
β 5 10 5 25 25 50

Lasso 82.2% 83.4% 79.6% 88.2% 86.2% 92.0%
Group Lasso 81.4% 86.6% 73.6% 91.4% 88.4% 93.2%

Proposed 82.6% 87.8% 80.8% 92.2% 90.6% 93.4%

per class). We see that the Group Lasso model degrades for
unbalanced training set as expected, and the proposed method
outperforms Group Lasso especially in such case.

V. CONCLUSION

We proposed a generalized Moreau enhancement of ℓ2,1-
norm based on LiGME framework. This nonconvex penalty
promotes group sparsity more effectively than ℓ2,1 with s-
maller bias while maintaining the overall convexity of the
regression model. The proposed model can be utilized in many
applications and we applied it to classification. Our model
makes use of the grouping structure by class information and
suppresses the tendency of bias estimation for high-amplitude
coefficients. Experimental results showed that the proposed
method is effective and competitive for image classification.
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