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Abstract—We tackle the sparse representation problem with
Generalized Gaussian noise from a new angle: we estimate the
unknown shape parameter p of the noise distribution, not only
compute the sparse representation. The procedure alternates
between computing sparse representations for the current p and
re-estimating p based on the empirical representation residual,
until convergence. As basic sparse representation algorithm we
propose a version of Feasibility Pump and show that it gives
better results than `p versions of Orthogonal Matching Pursuit
and `1 regularization. The results are comparable to those of the
algorithms that know the true shape parameter value.

Index Terms—mixed integer programming, sparse representa-
tion, feasibility pump, regularization, shape parameter estima-
tion, probability density function

I. PROBLEM FORMULATION

Sparse representations are an important mathematical tool
that is useful in fields like machine learning, image processing
or data classification. The sparse representation x ∈ Rn of a
signal y ∈ Rm using the dictionary D ∈ Rm×n, m < n, is
the solution to the linear system y = Dx, where most of the
coefficients of x are zero. In practice, noise affects the linear
system and hence diverse optimization problems can be posed,
depending on the type of noise and on the strategy to find the
sparse representation.

A. Random noise model

Noise is omnipresent in signal processing applications.
Usually, it is assumed that the noise is Gaussian, as this
is the most common type of noise and it is also a robust
choice in case the noise is unknown. Laplacian distribution
is encountered for example in speech processing and better
describes outliers. Impulsive noise is also met, particularly in
image and video processing.

In most applications, an assumption is made on the noise
distribution and the solution is given accordingly. However, in
the situation where the noise structure is unknown, it may be
more appropriate to work with a family of distributions and
to identify the value of the parameters that characterize the
distribution while solving the processing problem at hand. Our

This work was supported in part by a grant of the Romanian Ministry of
Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, project
number PN-III-P2-2.1-PED-2019-3248, within PNCDI III.

focus is on the Generalized Gaussian (GG) distribution. Our
interest comes from the viewpoint of sparse representations.

The GG probability density function is [1]

g(ξ;µ, σ, p) =
1

2Γ(1 + 1/p)A(p, σ)
e−|

ξ−µ
A(p,σ)

|p , ξ ∈ R (1)

where µ represents the mean, σ2 is the variance, p is the shape
parameter and A(p, σ) is a scaling factor; Γ is the Gamma
function. The parameter p dictates the shape of the distribution;
we name GG(p) the associated distribution (1). For p = 1 the
distribution is Laplacian and for p = 2 the normal distribution
is obtained.

Problems with GG(p) noise lead, through maximum likeli-
hood, to optimization involving the p-norm. This is usually
convenient for p ≥ 1. However, for p < 1 the problems
become non-convex and so harder to solve.

Our purpose in this paper is to estimate p while computing
sparse representations, thus allowing better representations
when the noise distribution is unknown.

B. Sparse representation problem

The sparse representation problem associated with GG(p) is

minimize
x∈Rn

‖y −Dx‖p

subject to ‖x‖0 ≤ K
(2)

Here, K is the sparsity level, namely the number of atoms K
that can be used for the representation x. The problem can
be formulated for p > 0, but we confine our study to p ≥ 1,
when the p-norm is truly a norm.

The problem (2) can be solved directly or can be relaxed
by replacing the l0 norm with the l1 one, typically in the form

minimize
x∈Rn

‖y −Dx‖p + λ‖x‖1 (3)

In most case, the shape parameter p is assumed to be known.
However, using a different p can lead to larger approximation
errors. Only if the shape parameter value is close to the true
one, we can hope to get a solution x that is closer to the
true solution. In this paper, we assume that p is unknown and
attempt an explicit estimation of its value.
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C. Existing work and contributions

A few examples of algorithms solving problems with GG(p)
noise, not necessarily involving sparse representations, can
be found in [2]–[4]. Sparse representations with GG(p) noise
are computed in [5] using the `1 relaxation (3), and [6] with
an adaptation of the Orthogonal Matching Pursuit (OMP) for
solving (2).

There are also robust algorithms that do not make explicit
assumptions on the noise distribution and also attempt to
ignore outliers. Correntropy Matching Pursuit (CMP) [7] dy-
namically allocates weights in a weighted least squares scheme
similar with OMP. A similar algorithmic approach, but with a
different weighting mechanism was used in [8].

Mixed Integer Programming (MIP) algorithms can be used
because the number of non-zero coefficients of x in (2) is
always an integer. Similarly, MIP algorithms can be considered
also for the binary decision whether a coefficient is part
of the support of x. In [9] and [10] a MIP algorithm was
proposed called the Feasibility Pump. This algorithms aims
to minimize the difference between the solution of the relaxed
integer problem and the problem that satisfies the initial integer
conditions. Several improvements have been proposed for this
algorithm in [11]–[15]. For the `1 norm case, a modification of
the Feasibility Pump algorithm for this problem was presented
in [16], while the case which uses the `2 norm a modification
was presented in [17].

In all the above works on sparse representations with GG(p)
noise, it is assumed that the shape parameter p is known. We
assume that p is unknown and our contribution is to propose
a framework for estimating p and thus to compute the sparse
representation with a value of p that is close to the true one.
The procedure is iterative and simple, requiring only a sparse
representation algorithm that works with fixed p.

The contents of the paper is as follows. Section II-A presents
the shape parameter estimation and sparse representation
framework. In section II-B we describe our Feasibility Pump
algorithm adapted to GG(p) noise. Section II-C gives some
details on other algorithms dedicated to the same problem that
we have used for comparisons. Finally, section III presents
experimental evidence showing that for low and medium
values of the sparsity level, our framework is able to give
accurate results on artificial data.

II. ALGORITHM

A. Shape parameter estimation framework

A key building block in our algorithm is the shape parameter
estimation (SPE) method proposed in [1]. Given the errors
y−Dx of a representation (sparse and linear in our case, but
the method is impervious to the model), a GG distribution
is implicitly built to best approximate the empirical error
distribution and so an estimation of the shape parameter value
p is obtained. The method has very low complexity, of the
order of the number of samples. More error samples lead to
better estimation, so we consider the general case in which t
signals are simultaneously represented; this is an assumption

Data: Signal to represent y ∈ Rm×t, dictionary
D ∈ Rm×n, sparsity level K ∈ Z, maximum
number of iterations for `p norm estimation
Iternorm, stopping threshold θ

Result: Sparse representations x ∈ Rn×t, estimated
shape parameter p ∈ R, p ≥ 1

1 Compute sparse representations x using algorithm with
p = 2 for each column of y

2 Use algorithm in [1] to estimate shape parameter p̃
from representation errors

3 Update norm p using (4)
4 while number of iterations ≤ Iternorm or |p− p̃| > θ

do
5 Compute sparse representations x using algorithm

with p from the previous step
6 Use algorithm in [1] to estimate shape parameter p̃
7 Update p using (4)
8 end
Algorithm 1: Algorithm for shape parameter estimation

that is valid in many situations, especially in the dictionary
learning context.

In general, a sparse representation algorithm (SRA) has
an underlying assumption of the noise characteristics. For
example, OMP assumes a Gaussian distribution; as a result, the
actual a posteriori error distribution is not far from a Gaussian
one, no matter what the (unknown) actual noise distribution
is.

Assuming that we have noise only within the GG family,
with unknown shape parameter ptrue ≥ 1, there are also SRAs
that have a certain flexibility (we use the acronym FSRA –
Flexible SRA) and can work with any given p, like those in
[5], [6]. The problem is that the shape parameter ptrue is often
not known a priori. So, in most of the cases, if we compute
the error y − Dx obtained by a FSRA and then apply the
SPE algorithm [1], the resulting shape parameter p̃ is clearly
different from ptrue as well as from the p we have used.

Our purpose is the estimation of ptrue using a FSRA. The
motivation is immediate: a FSRA in possession of ptrue is more
likely to produce a better representation than a FSRA working
with a different p or than a SRA that, like OMP and many
others, works with fixed p. We propose algorithm 1 to compute
an estimation of the shape parameter, together with the sparse
representation.

The idea is to start with a given p (we start from 2, as
in most cases the noise is Gaussian). At each step of our
iterative algorithm, the error y − Dx is computed and the
SPE algorithm [1] is used to compute the associated p̃. Then,
we update the norm via

p← (p+ p̃)/2. (4)

So, we go towards ptrue as guided by the empirical noise
distribution, but temper the change in p in order to prevent
oscillations. The sparse representation is computed with the
new p and so on.
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Data: Signal to represent y ∈ Rm, dictionary
D ∈ Rm×n, sparsity level K ∈ Z, maximum
number of iterations Iter, weights α, λ, γ

Result: Sparse representation x ∈ Rn
1 Solve relaxed (5) with b ∈ [0, 1]n. The vectors x and b

are obtained.
2 Use rounding procedure to obtain vector b̃.
3 while number of iterations ≤ Iter do
4 Solve problem (6) for x and b.
5 if b is integer then
6 exit loop;
7 end
8 Use rounding procedure to obtain vector b̃
9 if cycle is detected then

10 Perturb b̃
11 end
12 Update α← γα
13 end
14 Return x, optimized with Least Squares Method on

the found support.
Algorithm 2: Modified Feasibility Pump

This framework is designed so that any FSRA can be used
with it. The algorithm stops after the difference between |p−p̃|
is under a certain threshold θ. This threshold affects the speed
of the algorithm because more iterations are necessary if the
value θ is too small. Since it is unreasonable to aim for a very
precise estimation of ptrue, we keep θ large enough. Also, we
limit the number of steps to Iternorm, in order to stop possibly
erratic behavior. The number of iterations should anyway be
small, otherwise the algorithm becomes unpractical.

B. Sparse representation with `p norm using the Feasibility
Pump

The Mixed Integer Programming (MIP) proposed in [18]
introduces the binary variable b ∈ {0, 1}n to indicate which
atom of the dictionary D is part of the support of x. Applying
this idea to (2) and combining with the Lasso problem (3)
for faster sparsity enhancement, the following reformulation
is obtained:

minimize
x∈Rn,b∈{0,1}n

‖y −Dx‖p + λ‖x‖1

subject to 1Tnb ≤ K
−Mb ≤ x ≤Mb

(5)

where 1n is a vector of length n whose elements are all equal
to 1 and M is a large constant.

We propose Algorithm 2, which consists of a modification
of the Feasability Pump (FP) and has a structure similar with
that from [16] and [17].

The algorithm repeatedly solves two problems in which the
binary variable b is relaxed to the interval [0, 1]n. The solution

is then rounded to b̃, the nearest binary vector with K values
of one. One of the problems is (5). The other is

minimize
x∈Rn,b∈[0,1]n

(1− α)4(b, b̃) + α [‖y −Dx‖p + λ‖x‖1]

subject to 1Tnb ≤ K
−Mb ≤ x ≤Mb

(6)
where the term 4(b, b̃) = ‖b − b̃‖1 aims to reduce the dif-
ference between the two solutions (relaxed and integer) [19].
The decay term α accelerates convergence; taking 0 < γ < 1
in step 12 of the algorithm decreases the weight of the error
term in favor of the nearness term.

Both problems, the relaxed (5) and (6), are convex and we
solve them with CVX [20]; other solvers can be used.

The cycle detection and perturbation procedure is described
in [17]. We also note that, besides the use of the p-norm,
the objective of (6) differs from that in [17] by the lack of
extra weighting to compensate for the difference in magnitude
between terms.

C. Other algorithms for `p sparse representation
The greedy OMP-`p algorithm [6] for solving (2) is the

direct generalization to the p-norm of the standard OMP [21].
More precisely, if D̄ is the set of atoms selected by OMP-`p
at the current step and r = y − D̄x the current residual, the
next selected atom d is the one maximizing the projection

min
ξ
‖r − dξ‖p (7)

The selected atom is appended to the set D̄ and the associated
optimal representation x is computed from

min
x
‖y − D̄x‖p (8)

Both problems (7) and (8) are convex and the first has a
single variable. Moreover, good initializations are available. In
problem (7), the `2-optimal projection rTd can be used; also,
solving (7) can be limited to the atoms for which the product
rTd is high enough, since atoms that are nearly orthogonal
cannot have a good correlation in the `p norm, whatever is the
value of p; we have used a threshold equal to 0.5 maxd |rTd|.
In problem (8), we initialize the older elements of x with their
values from the previous step and the new element with value
ξ resulted from (7).

Several algorithms have been proposed for the solution of
the relaxed `p sparse representation problem (3). Since the
problem is convex, all algorithms give basically the same
solution, the difference being especially in complexity. The
main issue is in fact the choice of the parameter λ.

In [5] a modification of the alternating direction method
(ADMM) that adds the proximal operator of lp-norm functions
to the framework of augmented Lagrangian methods is pro-
posed. The proximal operators are used to estimate the solution
of (3) depending on the interval in which p is.

Also in [22] another modification of ADMM is proposed
in which the Continuous Mixed Norm proposed [23] is used
as penalty function; in their practical implementation, it is
replaced by a surrogate function.
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III. RESULTS

The numerical results are obtained using a testing scheme
similar to that from [16] and [17], with the significant distinc-
tion that the perturbation noise is now Generalized Gaussian.

Dictionaries of size 50 × 100 are generated randomly. For
each dictionary, t = 50 test signals are generated via y =
Dxtrue + u, where the true solutions xtrue are random and
have sparsity level K ∈ {4, 6, 8}. The perturbation noise u is
Generalized Gaussian and its variance is chosen such that the
signal to noise ratio is 30. The shape parameters used for the
noise are ptrue ∈ {1, 1.2, 1.4, 1.6, 1.8, 2}. For each combination
K, p, we test 10 different data sets.

We name FP-GGN the framework algorithm 1 in which the
Feasibility Pump algorithm 2 is integrated. Its results are the
sparse representation x and the shape parameter p. Similarly,
for comparison purposes, we insert in algorithm 1 the `p sparse
representation algorithms from [5] (named LP L1) and [6]
(named OMP-p).

We have also tested other algorithms: OMP, as a repre-
sentative of the algorithms based on normal distribution of
errors (p = 2); RLAD [24], as a representative of algorithms
using a Laplacian distribution of errors (p = 1); and the CMP
algorithm [7], as a member of the robust methods family. All
three algorithms gave clearly worse results than the above
adaptive algorithms for most (OMP, RLAD) or all (CMP) ptrue
values, so we will report no numerical results for them.

The algorithms were implemented in MATLAB, using the
CVX library for FP-GGN, and tested on a computer with a
6-core 3.4 GHz processor and 32 GB of RAM.

The algorithms are compared in terms of mean represen-
tation errors, recovery errors and estimated shape parameters.
The relative representation error

erep = ‖Dx− y‖p / ‖y‖p (9)

is used (where now x is the computed solution), in accordance
with the formulation of the basic problem (2). The relative
recovery error is

erec = ‖x− xtrue‖p / ‖xtrue‖p (10)

Table I gives the mean over the 10 runs of the estimated
shape parameters p, for the three algorithms under scrutiny.
Figure 1 contains the full information for all runs with K = 4
(with stars), the mean being displayed with a different symbol;
the horizontal displacement is used only for better visibility;
the values ptrue are the same for all algorithms. We note that the
shape parameter is recovered well enough, especially for the
lower values of the sparsity level K. The worst approximations
appear when ptrue = 1; a contributing cause is the fact that
values p < 1 are not possible, hence a certain inherent bias.

The mean representation and recovery errors are shown in
Tables II and III, respectively. For each K, there are two
columns: the left one contains the errors of our adaptive
algorithms for which ptrue is unknown; the right one contains
the errors of the same basic algorithms that are in possession
of ptrue and hence are run only once.

TABLE I
MEAN ESTIMATED SHAPE PARAMETERS FOR OMP-P (TOP IN EACH

CELL), FP-GGN (MIDDLE) AND LP L1 (BOTTOM)

K 4 6 8
p=1 1.1318 1.1854 1.2333

1.1236 1.1524 1.2592
1.0988 1.1809 1.1905

p=1.2 1.1979 1.1562 1.0924
1.2154 1.1865 1.0964
1.2164 1.1935 1.1174

p=1.4 1.3824 1.3317 1.2620
1.4025 1.3670 1.2477
1.4112 1.3913 1.2802

p=1.6 1.6396 1.5210 1.5365
1.6381 1.5692 1.4813
1.6343 1.5792 1.5559

p=1.8 1.8189 1.8346 1.8277
1.8156 1.8291 1.8034
1.8317 1.8453 1.8107

p=2 2.0148 2.0576 2.1439
2.0283 2.0399 2.0772
2.0171 1.9970 2.2541

Fig. 1. True and estimated shape parameters for K=4

We note that: i) the errors of the adaptive algorithms are
near from those of the algorithms knowing ptrue, occasionally
better; so, our proposed framework is able to provide good
representations even though ptrue is unknown; ii) FP-GGN
offers better error recovery in most cases; the results of OMP-
p are usually good, but large errors appear in few runs; LP L1
is more reliable.

Regarding support recovery, FP-GGN misses 0.184 posi-
tions per test (true support recovered in 82.4% of cases, OMP-
p misses 0.500 positions per test (true support recovered in
74.8% of cases) and LP L1 misses 0.267 per test (true support
recovered in 76.9% of cases). It can be seen that FP-GGN gets
the correct support in more cases that the other two algorithms.

The running time of FP-GGN is 1870s per test, OMP-
p takes 5.9s and LP L1 takes 6.3s. So, using a MIP-based
approach takes a larger amount of time. This is also caused
by the CVX library, which is more suited to large problems.
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TABLE II
MEAN REPRESENTATION ERRORS FOR OMP-P (TOP IN EACH CELL),

FP-GGN (MIDDLE) AND LP L1 (BOTTOM)

K 4 6 8
Adapt. Fixed Adapt. Fixed Adapt. Fixed

p=1 0.0343 0.0359 0.0447 0.0495 0.0505 0.0611
0.0271 0.0271 0.0262 0.0262 0.0255 0.0256
0.0272 0.0272 0.0263 0.0262 0.0262 0.0261

p=1.2 0.0283 0.0283 0.0384 0.0383 0.0590 0.0611
0.0286 0.0286 0.0281 0.0280 0.0273 0.0271
0.0289 0.0289 0.0279 0.0279 0.0279 0.0278

p=1.4 0.0293 0.0293 0.0326 0.0309 0.0505 0.0467
0.0296 0.0296 0.0290 0.0288 0.0282 0.0280
0.0308 0.0308 0.0291 0.0290 0.0286 0.0285

p=1.6 0.0298 0.0298 0.0306 0.0310 0.0457 0.0449
0.0300 0.0300 0.0293 0.0292 0.0287 0.0286
0.0300 0.0300 0.0295 0.0294 0.0295 0.0292

p=1.8 0.0326 0.0326 0.0323 0.0332 0.0478 0.0475
0.0302 0.0302 0.0295 0.0292 0.0288 0.0286
0.0306 0.0304 0.0296 0.0295 0.0291 0.0289

p=2 0.0306 0.0306 0.0359 0.0350 0.0456 0.0442
0.0303 0.0303 0.0296 0.0296 0.0289 0.0289
0.0310 0.0310 0.0302 0.0301 0.0294 0.0294

TABLE III
MEAN RECOVERY ERRORS FOR OMP-P (TOP IN EACH CELL), FP-GGN

(MIDDLE) AND LP L1 (BOTTOM)

K 4 6 8
Adapt. Fixed Adapt. Fixed Adapt. Fixed

p=1 0.0211 0.0235 0.0536 0.0636 0.0800 0.1106
0.0089 0.0093 0.0113 0.0123 0.0131 0.0142
0.0095 0.0097 0.0116 0.0119 0.0150 0.0154

p=1.2 0.0080 0.0079 0.0356 0.0362 0.1022 0.1107
0.0088 0.0088 0.0121 0.0121 0.0159 0.0149
0.0098 0.0098 0.0117 0.0117 0.0174 0.0171

p=1.4 0.0094 0.0093 0.0182 0.0152 0.0688 0.0617
0.0101 0.0100 0.0122 0.0121 0.0159 0.0154
0.0119 0.0119 0.0126 0.0126 0.0169 0.0168

p=1.6 0.0094 0.0093 0.0147 0.0152 0.0622 0.0606
0.0096 0.0097 0.0129 0.0130 0.0153 0.0153
0.0098 0.0098 0.0136 0.0134 0.0176 0.0168

p=1.8 0.0132 0.0132 0.0176 0.0191 0.0664 0.0694
0.0095 0.0097 0.0126 0.0153 0.0162 0.0162
0.0103 0.0101 0.0126 0.0124 0.0170 0.0166

p=2 0.0094 0.0094 0.0224 0.0202 0.0579 0.0566
0.0093 0.0092 0.0119 0.0118 0.0162 0.0161
0.0100 0.0104 0.0134 0.0133 0.0180 0.0179

IV. CONCLUSION

We have proposed a simple framework for sparse represen-
tation under Generalized Gaussian noise with unknown shape
parameter value p. Any sparse representation algorithm that
can work with known p can be used within this framework.
Our tests show that the Feasibility Pump algorithm that we
propose is better in terms of representation and recovery errors,
although slower. Results are especially good at low sparsity
level.

Future research will be dedicated to faster implementations
and to the extension of our framework to dictionary learning.
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