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Abstract— The decomposition of a signal as a linear combina-
tion of few atoms of a learned dictionary has been widely stud-
ied for low and high-level tasks in signal and image processing
applications. The atoms of the dictionary are typically assumed
to be normalized, real-valued, and stored as floating-point
numbers, which leads to high costs in storage and transmission
time for large scale applications. In this work, we propose to
learn binary atoms in order to represent an image sparsely.
To solve this problem, we include a smoothing function for
binarization and present an algorithm that iteratively alternates
between a sparse coding update and a dictionary update.
The binary structure allows to reduce the storage size of the
dictionary as well as efficiently synthesize the underlying image
using only addition and subtraction operations. Experiments
on sparse representation of natural images show that the
proposed binary dictionary gains up to 2 dB compared to binary
dictionaries obtained using traditional binarization techniques.

Sparsity, smooth approximation, dictionary learning, bi-
nary atoms.

I. INTRODUCTION

Unsupervised learning algorithms aim to discover the
structure hidden in the data and to learn representations that
are more suitable for image analysis systems [1], [2], [3].
Several unsupervised methods are based on reconstructing
the input from the representation while constraining it to
have specific desirable properties. Representations subject to
be sparse and overcomplete [4], [5] have become one of the
most widely used and successful models for inverse problems
in signal processing, image processing, and computational
imaging. The sparse-overcomplete representation model as-
sumes that the signal of interest x ∈ Rn can be decomposed
as a linear combination of few atoms of a given redundant
dictionary D ∈ Rn×m with m > n. Thus, the signal can be
expressed as x = Dα, where α contains the representation
coefficients with only a few non-zero components.

The redundant dictionary can either be a predefined set
of functions such as multiscale Gabor functions [6], [7],
multiscale windowed ridgelets [8], wavelets or be learned to
adapt to a set of training signals [5], [9]. Learned dictionaries
have shown to improve low-level signal processing tasks such
as image denoising [5], audio synthesis, as well as higher-
level tasks such as image classification [10], showing that
sparse learned models are properly adapted to natural signals.
In [11], a reconstructive and discriminative dictionary is
introduced for classification tasks. In [12], a discriminative
method is proposed for various classification tasks, learning
one dictionary per class; the classification process itself is

based on the corresponding reconstruction error and does
not exploit the actual decomposition coefficients.

Commonly, the atoms of the dictionary are assumed to be
normalized, real values, and stored as floating-point numbers.
For large scale applications, it leads to high costs in terms
of storage and high transmission times if the dictionary has
to be transmitted. For instance, a learned dictionary of 1024
atoms with size 16×16 requires 8M bytes (MB) for storage
[9]. However, for higher dimensional signals as in light
field photography [13], a learned overcomplete dictionary
with 5000 atoms can have a memory footprint of 111 MB.
In general, there are two major approaches to solve this
problem. The first is to reduce the number of atoms [14],
[15]. The second is to quantize the atoms [16] with the
extreme case of the entries of the atoms being binary.

This work studies the extreme case of the second approach
when the elements of the dictionary (Dij) are constrained
to have binary values. The binary dictionary brings two
main advantages to the dictionary learning problem. First, it
reduces the memory usage and model size 32 times compared
to the single-precision version. Second, the target signal can
be efficiently synthesized computationally by only adding
and subtracting the components of the sparse representation.
To the best of our knowledge, there are no previous studies in
the dictionary learning literature for the sparse representation
of a real signal using binary atoms.

The binarization implies severe degradation precision in
the recovery of the image. Therefore, this paper proposes a
scheme for binarizing dictionaries, which aims to alleviate
or even eliminate the accuracy degradation while still re-
ducing the synthesis time, resource requirement, and power
consumption. We introduce a smooth approximation function
of the Sign function that allows employing gradient methods
for the training of the dictionary that are restricted due to the
non-differentiable nature of the Sign function. Specifically,
this paper proposes a binary dictionary learning smoothing
stochastic gradient method (BinDic) based on a special
smooth function. BinDic is based on a smooth projected
gradient method (SPG) [17], [18] which is useful for large
scale non-smooth non-convex optimization problems on a
closed convex set [19], [20]. The SPG algorithm solves the
non-smoothness of the optimization problem by introducing
a smoothing function, which approximates the original opti-
mization function.

II. DICTIONARY LEARNING PROBLEM

In this section, we formulate the dictionary learning prob-
lem based on a set of N examples. Consider the training set
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X = [x1, · · · ,xN ]. The dictionary learning process can be
formulated as the following joint optimization problem

min
D∈D,A

‖X−DA‖2F +
N∑
i=1

r(αi)

subject to (s.t.) D ⊆ Rn×m,
(1)

where D is the dictionary and A = [α1, · · · ,αN ] ∈ Rm×N
is the sparse coefficient set for all the examples. Therein,
r(·) : Rm → R is a regularization function that promotes
the sparse constraint for the coefficient vectors. For example,
the l1 norm ‖·‖1 or the l0 pseudonorm ‖·‖0 [21], [22].
This problem seeks the best possible dictionary for the
sparse representation of the example set X. In this work,
we propose to obtain a binary dictionary. One approach to
obtain these values is to constrain the set D to have elements
with only binary entries, e.g., {−1, 1}, which is known
to be an expensive and combinatorial problem [23]. An
alternative approach used in this work is to constrain D to be
a convex real set and employ a function that promotes binary
values. In the following section, we present a binarization
function applied to the elements of the dictionaries and give
some insights into how the dictionary update becomes more
challenging.

Binarization function

In order to transform the real-valued variables into two
values, one common approach is to use a binarization func-
tion. The most known approach is to use the sign function
defined as:

φ(z) = Sign(z) =

{
1, if z ≥ 0,

−1, otherwise,
(2)

where φ(z) is the binarized variable and z the real-valued
variable. To simplify the notation we set φ to be the Sign
function. Using this convention, the binary dictionary learn-
ing problem can be rewritten as

min
D∈D,A

‖X− φ(D)A‖2F +
N∑
i=1

r(αi)

subject to (s.t.) D ⊆ Rn×m,
(3)

where the function φ is applied component-wise.
The optimization problem (3) with respect to D (dictio-

nary update) becomes more challenging due to the non-linear
and non-smooth function φ(·). The derivative of φ(·) is zero
in all the domain except in zero, making it incompatible with
gradient descent methods for the optimization of the atoms
of the dictionary. To overcome this limitation, this paper
proposes an algorithm based on the Smoothing Projected
Gradient (SPG) method [17] proposed by the minimization
problem on a closed convex set, assuming that the objective
function is locally Lipschitz continuous but non-convex, non-
smooth. The SPG method introduces an auxiliary smoothing
function ϕµ(·) with parameter µ to approximate the original
objective function, in order to solve the non-smooth and non-
convex optimization problem.

III. BINARY DICTIONARY LEARNING

An ideal objective function in dictionary learning would be
to select the optimal dictionary for the underlying distribution
of training samples

D? ∈ argmin
D∈D

Ex∼Pfx(D),
(4)

where P is the distribution of the signal of interest and fx(D)
defines a loss function that should be small if D is good
at representing the signal x in a sparse fashion. The loss
function for the binary dictionary learning problem is defined
as :

fx(D) = min
α∈Rm

Lx(D,α), (5)

with
Lx(D,α) = ‖x− φ(D)α‖22 + r(α). (6)

However, in practical dictionary learning problems, given a
finite set of samples X = [x1, · · · ,xN ] of the distribution P,
we optimize the empirical average cost function as follows

min
D∈D

fN (D) = 1
N

N∑
i=1

fxi
(D). (7)

It should be noted that for our purposes, we assume that
a minimizer α? exists. There are several works providing
algorithms that minimize the empirical cost function given by
(7) with φ equal to the identity function as well as theoretical
results and sample complexity for the dictionary learning
problem [24], [25], [5], [26]. Recall, that this function is
supposed to be applied component wise.

Since the objective function in (7) is non-smooth and non-
convex, we employ an algorithm based on the smoothing
projected gradient method (SPG) [18] to solve this problem.
Combining smoothing techniques and the classical projected
gradient method, the SPG method was proposed to solve
problems where the objective is locally Lipschitz continuous
but not necessarily convex and differentiable [18].

A. Smooth binarization function

The SPG is a smoothing function method that generalizes
the PG method and its convergence for continuously differen-
tiable optimization to non-smooth, non-convex optimization.
As its name indicates, the key idea of the SPG method is
to use a parametric smoothing approximation function with
parameter µ in the PG method. More formally, the concept
of smooth function is defined as follows [18]

Definition 1 (Smothing function:): Let f : A → R be a
locally Lipschitz continuos function with A ∈ R being an
open set. Then g : A × R++ → R is a smoothing function
of f(·), if g(·, µ) is smooth in A for any fixed µ ∈ R++ and

lim
µ↓0

g(w, µ) = f(w), (8)

for any fixed w ∈ Rn.
Based on this definition we can construct a smoothing

gradient method that exploits the rich theory and solution
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methods of optimization problems with continuously differ-
entiable functions [27]. For instance, in [18], it is shown
that any accumulation point generated by the SPG method
globally converges to a stationary point associated with the
smoothing function used in the method, which is also a
stationary point of the non-smooth problem. Developing a
smoothing method to solve (7) involves three main parts:
1) define a smoothing function, 2) choose an algorithm
to solve the smooth problem and 3) update the smoothing
parameter µ [18], [27]. Thus, in order to obtain a smooth
approximation of the cost function fN , we propose first to
consider the function ϕµ(·) with parameter µ defined below
to be a smooth approximation of the function φ(·) in (2)

ϕµ(w) =
w√

w2 + µ2
, (9)

where µ ∈ R++. Fig. 1 shows the function (9) for different
values of µ in the interval [1, 10−6].

Fig. 1. Smooth approximation function ϕµ. Note that when µ → 0,
ϕµ(w) ≈ φ(w)

Based on the smoothing version of the Sign function we
can construct a smooth approximation g(·, µ) with parameter
µ of the cost function fN in (7) which leads to the following
binary smooth optimization problem

min
D∈D

g(D, µ) = 1
N

N∑
i=1

gxi(D, µ), (10)

with

gxi
(D, µ) = inf

α∈Rm
‖xi − ϕµ(D)αi‖

2
2 + r(αi). (11)

The cost function g can be rewritten in short form as
g(D, µ) = inf

A∈Rm×N
gX(D, µ) with

gX(D, µ) =
1

2N
‖X− ϕµ(D)A‖2F +R(A) (12)

where A = [α1, · · · ,αN ] and R(A) =
N∑
i=1

r(αi).

The following Theorem shows that the function g(·) is a
uniformly smooth approximation of the function fN (·).

Theorem 1: Let fN and ϕµ(·) be as defined in (7) and
(9), respectively. Then g(·, µ) in (10) is smooth for any fixed
µ > 0, and there exists a constant k1 > 0 satisfying

|g(x, µ)− fN (x)| ≤ µk1. (13)

IV. BINARY DICTIONARY LEARNING METHOD

This section presents the optimization algorithm termed
BDL-SSG that is proposed to solve (10). Note that this non-
convex problem is a joint optimization problem with respect
to D and A. A natural strategy to solve this problem is
to alternate between the two variables, minimizing over one
while keeping the other one fixed. The optimization problem
with respect to A is convex, while the problem with respect
to D is not convex due to the binarization function ϕµ. Thus,
for the dictionary update, we use a smoothing stochastic
gradient method. A sketch of the proposed strategy is detailed
in Algorithm 1. The initialization of the algorithm and the
optimization steps with respect to A and D are detailed in
the following sections.
Algorithm 1 Proposed Binary Dictionary Learning

1: for t = 1 to stopping rule do
2: A(t) = g(D(t−1), µ) +R(A) . Algorithm 2
3: D(t) = argmin

D∈D
g(D, µ) . Algorithm 3

4: return: D,A

A. Optimization with respect to A

The first step of the minimization problem optimizes the
cost function with respect to A for a fixed dictionary D using
the ADMM algorithm. An auxiliary variable is introduced to
split the objective function and the constraints leading to

argmin
A,V

h(A,V) = ‖X− ϕµ(D)A‖2F +
N∑
i=1

R(vi)

s.t. A = V.
(14)

The augmented Lagrangian associated with (14) is

L(A,V,G) = h(A,V) + ρ
2‖A−V + G‖22, (15)

where G is the scaled dual variable and ρ ≥ 0 is weighting
the augmented Lagrangian term. In this work we set the
regularization function as r(·) = λ‖·‖1. The exact procedure
used for estimating A is summarized in Algorithm (2).

Algorithm 2 ADMM algorithm to estimate A

1: V(0),G(0)

2: for k = 1 to stopping rule do
3: A(k+1) = argmin

A
L(A,V(k),G(k))

4: V(k+1) = argmin
V

L(A(k+1),V,G(k))

5: G(k+1) = G(k) + V(k+1) −A(k+1)

6: return: Ak+1

B. Optimization with respect to D

In this section we introduce a smoothing gradient method
to solve (10). Note that we assume that a minimizer Â for
the sparse representation exists. Therefore, the cost function

can be rewritten as g(D, µ) = 1
2N

∥∥∥X− ϕµ(D)Â
∥∥∥2

F
. The

standard gradient algorithm is defined as

Dk+1 = Dk − β ∂g(Dk, µk)

∂D
, (16)
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where β is the step size. Here we propose a block stochastic
gradient method in order to alleviate the computational
complexity when N is large. Instead of calculating the
whole gradient ∂g, we choose only a random subset HΓk

(stochastic gradient) of the sum of each iteration k.

Algorithm 3 BinDic: Binary Dictionary learning smoothing
stochastic gradient

1: Input: Data {xi}Ni=1 and ε0 = 10−10. Choose constants
γ1 = 0.5, µ0 = 1, γ = 0.01 and tolerance ε.

2: Initial dictionary D0

3: while ‖HΓk
‖2 ≥ ε do Choose Γk uniformly at random

from the subsets of {1, · · · , N}
4: Dk+1 = Dk − βHΓk

5: if ‖HΓk
‖2 ≥ γµk then

6: µk+1 = µk
7: else
8: µk+1 = γ1µk

9: return: Dk+1 = D̂

V. SIMULATION RESULTS

We carried out experiments on natural image data to
illustrate the practicality of the proposed algorithm and the
general sparse coding framework in a binary dictionary. We
should note that our tests come only to prove the concept of
using such dictionaries with sparse representations of natural
images. However, this algorithm can be applied to other types
of signals.

A. Simulation scenario and parameters

The training data were constructed as a set of 12, 288
examples of block patches of size 8 × 8 pixels of 7 dif-
ferent natural images, taken from an image database (in
various no overlapping locations). Additionally, following
common practice (see e.g. [28], [29]), the binary sparse
coding/dictionary learning algorithms are also applied to
test/training images after a high pass filtering preprocessing
step. We used the following parameters for algorithm 3:
γ1 = 0.5, γ = 0.01, β = 0.5, µ0 = 1, and ε = 1 × 10−6.
The regularization parameter for the estimation of the sparse
representation was fixed to λ = 0.001.

B. Sparse representation using binary dictionaries

In this section we evaluated the proposed learned dictio-
nary for sparse representation of natural images. We compare
the trained dictionary with a full precision dictionary trained
using K-SVD [5], and a binarization of the K-SVD dictionary
using the Sign function (bin-KSVD). The number of atoms
is equal to m = 4n. We also compare with the analytical
Hadamard transform with m = n.

First, the capability of the sparse representation of the pro-
posed dictionary on three different high frequency images is
tested. The learned dictionaries and the Hadamard dictionary
are presented in Fig. 2. The patches from the test images

K-SVD bin-KSVD

ProposedHadamard

Fig. 2. Learned dictionaries using K-SVD algorithm, the proposed algo-
rithm, binarization of the K-SVD (bin-KSVD), and Hadamard dictionary.

are not included in the training set. The number of non-zero
coefficients of each non-overlapping patch of the images is 6.
Quantitative results are presented in Table I. Numerically, we
can see that the proposed binary dictionary presents results
with lower degradation accuracy compared with bin-KSVD.
Furthermore, in some cases, the results using the proposed
dictionary are very competitive with the full precision case
having the advantage of only using binary atoms.

TABLE I
PERFORMANCE OF DL METHODS: PSNR (dB) AND SSIM

Methods Metric HOUSE BOAT ELAINE

K-SVD PSNR 30.93 29.71 24.26
SSIM 0.95 0.89 0.85

bin-KSVD PSNR 27.62 27.87 23.81
SSIM 0.91 0.84 0.83

Hadamard PSNR 26.33 26.78 22.74
SSIM 0.52 0.54 0.46

Proposed PSNR 29.63 28.84 24.51
SSIM 0.94 0.87 0.87

VI. CONCLUSION

In this work, we have proposed an algorithm for training a
binary dictionary for the overcomplete sparse representation
of natural signals. Using a smooth approximation of the Sign
function, the proposed algorithm solves a smooth problem
associated with the non-smooth non-convex binary dictio-
nary learning problem. Numerical results showed that the
proposed binary dictionary has lower degradation accuracy
for the reconstruction of natural signals compared with a
traditional binarization scheme. Furthermore, in some cases
the reconstruction using the binary dictionary is competitive
with the full precision dictionary obtained using the K-SVD
algorithm.
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