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Abstract—Audio inpainting refers to signal processing tech-
niques that aim at restoring missing or corrupted consecutive
samples in audio signals. Prior works have shown that `1-
minimization with appropriate weighting is capable of solving
audio inpainting problems, both for the analysis and the synthesis
models. These models assume that audio signals are sparse
with respect to some redundant dictionary and exploit that
sparsity for inpainting purposes. Remaining within the sparsity
framework, we utilize dictionary learning to further increase the
sparsity and combine it with weighted `1-minimization adapted
for audio inpainting to compensate for the loss of energy within
the gap after restoration. Our experiments demonstrate that our
approach is superior in terms of signal-to-distortion ratio (SDR)
and objective difference grade (ODG) compared with its original
counterpart.

Index Terms—Audio inpainting, error concealment, sparse
representation, dictionary learning, proximal algorithms,
Chambolle-Pock algorithm.

I. INTRODUCTION

Audio signals are often prone to distortions resulting in
modification or loss of information at certain sections. These
localized distortions occur mostly during recording, transmis-
sion or storage and may span from several milliseconds to
few seconds. They may be caused by, e.g., impulsive noise,
packet loss, or scratches on the storage device. In the field
of audio signal processing, the task of recovering such a lost
section aka gap while ensuring that the audio artifact is almost
imperceptible is known as audio inpainting [1]. We note that
this recovery has also been referred to in the literature as audio
interpolation/extrapolation, waveform substitution, and, more
generally, for arbitrary (i.e., not necessarily audio) signals as
error concealment.

Over the years, several audio inpainting methods have been
proposed, based on various approaches like auto regression by
Janssen [2], Bayesian estimation [3], convex optimization [4]–
[6], sinusoidal modeling [7], similarity graphs [8], and deep
neural networks [9]–[11]. Whereas auto regression, Bayesian
estimation and convex optimization are applicable to short
gaps (less than 100 ms), sinusoidal modeling, similarity graphs
and deep neural networks work well for longer gaps (more
than 100 ms).

This work was supported by the Vienna Science and Technology Fund
(WWTF) project MA16-53 (INSIGHT) and the Austrian Science Fund (FWF)
project I 3067-N30 (MERLIN) and Y 551-N13 (FLAME).

In this paper, we focus on audio inpainting approaches
which are motivated by the observation that real-world audio
signals may be sparsely represented in some overcomplete
dictionary [1], [4], [5]. The cited methods exploit sparsity
to fill the gap by employing optimization techniques while
utilizing the information present around the gap. There are
many different possibilities to formulate an audio inpainting
problem as a sparsity-based optimization task. For example, by
greedy heuristics such as OMP [12] and convex optimization
via `1-minimization [5].

A. Notation

Roman letters A,B, . . ., a,b, . . ., and a, b, . . . designate
matrices, vectors, and scalars, respectively. Sets will be de-
noted by calligraphic letters such as S. We use the notation
AS to indicate the column submatrix of A consisting of the
columns indexed by S. Akl denotes the element in the kth
row and lth column of A. The superscripts T and H represent
transposition and Hermitian transposition, respectively. IN
denotes the N ×N identity matrix. We write for the indicator
function χS (x), where

χS (x) =

{
0 x ∈ S

+∞ otherwise.

For a vector u = (u0, u1, · · · , uN−1)T its support (i.e., indices
of non-zero entries) is denoted by supp(u). Its `0-“norm” and
the `1-norm are given as ‖u‖0 = card(supp(u)) (i.e., the
cardinality of the support) and ‖u‖1 =

∑
n |un|, respectively.

Finally, we denote by ‖X‖1,1 =
∑
m,n |Xm,n| the entry-wise

`1-norm of a matrix X.

II. MOTIVATION AND CONTRIBUTION

This work is inspired by two model-based optimization ap-
proaches for audio inpainting: SParse Audio INpainter (SPAIN)
with dictionary learning [4], see also [13], and (weighted)
`1-minimization based audio inpainting [5]. Note that both
methods use the Gabor transform (see Section III) to obtain a
sparse representation of the original audio signal.

The optimization based inpainting methods are quite ef-
ficient in filling short gaps, but as the gaps tend to get
longer, they suffer from energy loss within the gap after
restoration. As a means to tackle this problem, remaining in the
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framework of sparse audio inpainting, in [5], various weighting
methods were combined with `1-minimization, whereas in [4],
a dictionary learning method was proposed and combined with
a modified version of the SPAIN algorithm, i.e., SPAIN-MOD
[4]. This combination of dictionary learning and SPAIN-MOD
will be referred to as SPAIN-LEARNED henceforth. SPAIN-
LEARNED deforms the underlying Gabor dictionary such
that the sparsity of the analysis coefficients of the resulting
dictionary is further enhanced. A short description on how the
Gabor dictionary is deformed, i.e, how the dictionary is learned
from Gabor coefficients is given in VII-A. SPAIN-LEARNED
exhibits excellent reconstruction performance compared to
other techniques like (plain) SPAIN [6] and weighted `1-
methods as presented in [5].

Motivated by these observations, we propose to slightly
modify a selected weighted `1-method from [5] as well as to
incorporate the dictionary learning technique presented in [4].
As we will demonstrate, this modified weighted `1-method
exhibits significantly improved reconstruction performance
compared with the original setting and achieves comparable
results as the (currently) state-of-the-art SPAIN-LEARNED
algorithm.

III. GABOR SYSTEMS

In this work, we will exploit time-frequency (TF) sparsity,
specifically with respect to Gabor dictionaries. In a finite
discrete setting, the TF coefficients are obtained by applying
the discrete Gabor transform (DGT) [14] to the input audio
signal. Note that the DGT is also commonly known as short-
time Fourier transform (STFT).

For a window function g ∈ RL and time and frequency hop
sizes a and b, the collection of TF modulated versions of g,
is called a Gabor system, i.e.,

G = {g[· − na]ei2πmb ·/L}m,n = {gp}p=0,1,...,NM−1.

Here, m = 0, 1, . . . ,M−1 is the frequency modulation index,
n = 0, 1, . . . , N − 1 is the time index, and

p := pN,M (m,n) = n+mN (1)

is the combined time-frequency index. The matrix GS ∈
CL×NM , defined by setting its p-th column equal to gp, is
denoted as synthesis operator of the Gabor system G. With
the analysis operator GA = GH

S , the Gabor coefficients of a
signal x ∈ RL with respect to G are given by

cp = (GAx)p = gHp · x,

where c = (c0, c1, · · · , cNM−1)Tis called the coefficient
vector of x and contains P = MN elements. An appropriate
choice of g as well as parameters a and M will ensure that GA
has a bounded left-inverse, or equivalently, that G is a frame
for CL [15]. In other words, it allows perfect reconstruction
from the redundant coefficients c. In that case, the composition
F = GSGA, called the frame operator, is invertible and perfect
reconstruction is achieved by the Gabor system generated from
the dual window F−1g. Most DGTs used in practice form a
tight frame, i.e., F = AIL, for some A > 0, such that the

dual system is generated by (1/A)g. In this contribution, we
restrict to such tight frames in order to remain consistent with
the reference paper [5] for comparison later on.

Since we assume that x, g ∈ RL, it is easy to see that we
have

cn+mN = cn+(M−m)N , for all m ∈ [1, dM/2e − 1]. (2)

Hence, it is sufficient to compute only the first P ′ = NM ′

values of c, where M ′ = bM/2c + 1, see also [14], [16].
Similarly, the analysis and synthesis operators can, for most
purposes, be truncated at the NM ′-th row and column, respec-
tively. We will denote these truncated matrices by G̃A and G̃S
and will refer to the corresponding transform as real DGT.

IV. PROBLEM FORMULATION

For an audio signal x ∈ RL, let the indices of the reliable
and unreliable samples (= signal vs. gap resp.) be known. The
goal of audio inpainting is to recover a signal, y ∈ RL from
x ∈ RL such that the gap is filled (in a ‘meaningful’ way) and
is also consistent with the reliable part of x . The (convex) set
Sx consisting of all such possible signals can expressed as,

Sx ,
{
y ∈ RL : MRy = MRx

}
,

where MR : RL → RL is a binary masking operator that sets
unreliable samples to zero and keeps only the reliable samples.

A formulation of the sparse audio inpainting problem for
an analysis model is,

arg min
z

‖G̃Az‖0 s.t. z ∈ Sx. (3)

The `0-minimization problem described in (3) is NP hard.
Hence, instead, one normally opts for its convex relaxation,
i.e., `1-minimization.

V. AUDIO INPAINTING WITH WEIGHTED `1-MINIMIZATION

Introducing a weighting vector

w̃ = (w̃0, . . . , w̃NM ′−1)
T ∈ RNM

′
, (4)

see also [17], a sparsity-based formulation of audio inpainting
with `1-minimization is given as,

arg min
z

‖w̃ � G̃Az‖1 s.t. z ∈ Sx. (5)

where the symbol � denotes the element-wise product.
We will discuss the choice of weighting vector w̃ in the

next section. Instead of (5), we can consider the unconstrained
problem

arg min
z

‖w̃ � G̃Az‖1 + χSx
(z), (6)

which can be solved using a proximal algorithm [18], [19].
Proximal methods are efficient in iteratively solving complex
large-scale convex minimization problems by solving a series
of more, but smaller and simpler convex optimization prob-
lems.

Note that in (6), if the real DGT, G̃A, and corresponding
(short) weighting vector w̃ ∈ RNM ′

were replaced by the
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full DGT, GA, and another (long) weighting vector, w =
(w0, . . . , wMN−1)

T ∈ RNM , i.e.,

arg min
z

‖w �GAz‖1 + χSx
(z), (7)

then (7) would be identical to the weighted `1-minimization
problem solved in [5] by means of the Chambolle-Pock (CP)
[20]. However, in order to be compatible with our dictionary
learning framework according to [4], see also Subsection
VII-A, which is explicitly tailored to the real-valuedness of
audio signals, we will consider (6) instead.

VI. CHOICE OF WEIGHTING VECTOR

Larger coefficients are often penalized more heavily than
smaller coefficients in `1-based minimization problems. In
audio inpainting, this behaviour causes an energy loss within
the gap in the restored signal [21], [22].

Besides this universal effect of `1-minimization, the choice
of the overcomplete dictionary, i.e., in our case, the Gabor
transform also contributes to the energy drop phenomenon.
This is because the coefficients corresponding to the window
that overlap with the gap carry significantly less information
about the reliable signal in comparison to the coefficients
obtained from the reliable parts. In [5], in order to compensate
for this loss, the Gabor atoms are weighted. Smaller weights
are assigned to atoms carrying more unreliable information
so that they contribute less to the objective function, thereby
getting less penalized during minimization.

There are several approaches to obtain a weighting vector
w, such as support-based, `1-norm-based, `2-norm-based, and
energy-based approaches, see [5]. In this work, we will only
consider energy-based weighting, as in pilot tests we found
this choice to be the most promising. If gp is a Gabor atom
and MRgp is its part corresponding to the reliable part of the
signal, then energy-based weighting according to [5] assigns
the weights w = (w0, . . . , wP−1)

T for (7) with

wp =
‖MRgp‖22
‖gp‖22

. (8)

Similarly, for (6), the weights introduced in (4), w̃ =
(w̃0, . . . , w̃P ′−1)

T are simply given by (8) with w̃p = wp.

VII. LEARNED WEIGHTED `1-MINIMIZATION

A. Dictionary Learning

In [4], we increased TF sparsity by means of a sparsifying
dictionary, obtained by a suitable deformation of the Gabor
dictionary. The applied deformation matrix was learned from
the TF coefficients in the neighborhood N of the gap, via a
basis optimization method developed in [23], [24].

Succinctly, the dictionary learning technique in [4] solves

D̂ = arg min
D∈D

‖DXN ‖1,1 , (9)

where N ⊂ {0, . . . , N − 1} is a temporal neighborhood of
the gap and XN ∈ CM ′×|N| denotes the Gabor analysis
coefficients in that neighborhood, arranged in matrix form,
i.e., (XN )m+1,n+1 = (G̃Ax)n+mN , for n ∈ N and m ∈

{0, . . . ,M ′ − 1}. Further, D ∈ CM ′×M ′
represents a set of

unitary deformation matrices with a special structure taking
into account the conjugate-symmetry (2) underlying the real
DGT (see [4] for a detailed description).

B. Weighted `1-Minimization with Learned Dictionary

Utilizing conjugate-symmetry and including the learned
dictionary, we can modify the optimization problems defined
in (5) and (6). To this end, we define the following1 block
matrix

D̂block :=

 D̂1,1IN · · · D̂1,M ′IN
...

. . .
...

D̂M ′,1IN · · · D̂M ′,M ′IN


and replace (5) and (6) by the following minimization prob-
lems, respectively,

arg min
z

‖wL � D̂blockG̃Az‖1 s.t z ∈ Sx

arg min
z

‖wL � D̂blockG̃Az‖1 + χSx(z), (10)

where wL ∈ RP ′

+ denotes a weighting vector that depends on
the learned dictionary.

The elements of the deformed Gabor dictionary can be
expressed as ĝp = (G̃SD̂

H
block)p+1, p ∈ {0, . . . , P ′ − 1}. Then,

the weighting vector corresponding to the learned dictionary
is given by ŵ = (ŵ0, . . . , ŵP ′−1)

T with

ŵp =
‖MRĝp‖22
‖ĝp‖22

.

As in the original setting [5], we can also solve (10)
using the CP proximal algorithm. The learned weighted `1-
minimization algorithm for inpainting (CP-LEARNED) is
summarized in Alg. 1.

Note that we define clipwL
(z), projSx (z), and stopping

criterion essentially in the same way as in [5],

clipwL
(z) = z− arg(z)�max(|z| − wL, 0),

projSx (z) = < ((I−MR)z +MRx) ,

by, additionally, taking into account that Sx is real-valued. The
stopping criterion is

‖G̃Az
(i) − G̃Az

(i−1)‖22 ≤ ε‖G̃Az
(i−1)‖22,

where ε > 0 is the tolerance.

VIII. SIMULATION RESULTS AND DISCUSSION

In this section, we compare the audio inpainting per-
formance of our learned `1-minimization technique, CP-
LEARNED, with the original method, CP, presented in [5].
We also compare our approach with other audio inpainting
techniques such as A-SPAIN-MOD [4], A-SPAIN-LEARNED
[4], A-SPAIN [6] and JANSSEN [2]. ‘A-’ stands for analysis
variant. Note that A-SPAIN uses a frame-wise DFT dictionary

1Note that this special structure is required to cope with the matrix
arrangement/stacking according to (1).
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Algorithm 1: Learned weighted `1-minimization (CP-
LEARNED)

Input: x, MR, D̂block, G̃A, G̃S, wL, σ, τ
Output: ŷ

1 choose τ , σ > 0 satisfying τσ‖G̃SD̂
H
block‖ ≤ 1

2 choose primal variable p(0) ∈ CL and dual variable
q(0) ∈ CNM ′

arbitrarily
3 set output variable z(0) = p(0)

4 set iteration counter i = 0
5 repeat
6 q(i+1) = clipwL

(
q(i) + σ · D̂blockG̃Az

(i)
)

7 p(i+1) = projSx
(
p(i) − τ · G̃SD̂

H
blockq

(i+1)
)

8 z(i+1) = 2p(i+1) − p(i)

9 i← i+ 1

10 until stopping criterion met
11 return ŷ = projSx

(
z(i+1)

)

(redundancy 4) whereas A-SPAIN-LEARNED and A-SPAIN-
MOD use a Gabor dictionary (redundancy 4). JANSSEN uses
auto-regressive model of order p = min(3H+2, wg/3), where
H denotes the number of missing samples within the current
frame (window), wg is the window length, and the number
of iterations was set to 50. In order to allow for a valid and
comparable assessment, we consider essentially the same setup
as in [4] and [5].

As a means to compare the performance, we use the signal-
to-distortion ratio (SDR) [1] defined as,

SDR(xorig, xinp) = 10 log10
‖xorig‖22

‖xorig − xinp‖22
[dB],

where xorig and xinp denote original and inpainted signal within
the gaps, respectively. Note that higher SDR values imply
better signal restoration.

For our experiments, we used a collection of ten music
recordings chosen from the EBU SQAM dataset [25]. All
chosen signals were sampled at 44.1 kHz and possessed
different levels of sparsity with respect to the original Gabor
dictionary. In each test instance, the input was a signal with
5 gaps at random positions. The lengths of these gaps ranged
from 5 ms up to 85 ms. For fixed lengths, the results over all
ten signals containing the 5 gaps were averaged.

Furthermore, we also calculated the PEMO-Q values [26],
which utilize a human auditory system model to assess the
quality of the restored signal. Thus, the PEMO-Q criterion is
closer to the subjective evaluation than the SDR. PEMO-Q
consists of two quantities: objective difference grade (ODG)
and perceptual similarity measure (PSM). For simplicity, we
restrict to ODG in this paper. ODG can be interpreted as the
degree of perceptual similarity of xorig and xinp. Basically,
ODG quantifies the perceptual impact of audio artifacts in the
restored signal and its value ranges from −4 (very annoying)
up to 0 (imperceptible).

Gabor Parameters Used Value

window g Hann window
window length wg 2800 samples (∼64 ms)

hop size a 700 samples
number of modulations M 2800

TABLE I
GABOR PARAMETERS

Throughout our experiments, we used the fast implementa-
tion of Gabor transforms available in the LTFAT toolbox [14],
[16], and adopted its time-frequency conventions. The Gabor
parameters used in our experiment are summarized in Table I.
The dictionary learning procedure proposed, see [4] for algo-
rithmic details, is run for at most itermax = 20 iterations with
off-diagonal parameter d = 1, and the remaining parameters
were set to ρstart = 1 and ε = 2−20. Finally, all SPAIN variants
used the iteration parameters s = t = 1 [4].

Fig. 1(a) shows the inpainting performance in terms of
SDR of all tested algorithms. We can observe that CP-
LEARNED performs significantly better than CP, i.e., the orig-
inal weighted `1-minimization method. Even more, it beats all
other methods except A-SPAIN-LEARNED, which is slightly
superior for gap lengths below 45 ms. Remarkably, CP-
LEARNED even outperforms the otherwise best performing
A-SPAIN-LEARNED algorithm for longer gaps (≥ 45 ms)
although the observed improvements seem to be not very
pronounced.

Fig. 1(b) shows the overall inpainting performance in terms
of ODG. For smaller gap lengths (≤ 35 ms), the performance
of CP-LEARNED is superior to CP and a bit worse compared
to other competing methods, whereas for longer gap lengths
(≥ 45 ms), CP-LEARNED’s performance relative to the other
methods improves, exceeding all the other methods except A-
SPAIN-LEARNED for gap lengths above 65 ms.

IX. CONCLUSION

We presented an approach for audio inpainting that com-
bines weighted `1-minimization with a dictionary learning
framework in order to mitigate the energy drop phenomenon
within the gap in the restored signal. This approach learns
a sparsifying dictionary from the Gabor coefficients obtained
from the reliable parts near the gap ultimately resulting in
increased sparsity of the analysis coefficients. Additionally,
the learned dictionary is also used for computing the weights.
Moreover, by exploiting the real-valuedness of audio signals,
we only used M ′ = bM/2c + 1 coefficients instead of
the full M coefficients for the inpainting task unlike in the
original setting. This is noteworthy because utilizing half of
the coefficients implies reduced computational effort. Our ex-
perimental results demonstrated that the proposed method, i.e,
weighted `1-minimization combined with dictionary learning,
yields large performance gains and significantly outperforms
its original counterpart for all gap lengths. Finally, comparison
with A-SPAIN-LEARNED demonstrated that CP-LEARNED
has comparable (in some instances even better, in other slightly
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Fig. 1. Performance comparison of different audio inpainting algorithms in terms of (a) SDR and (b) ODG for varying gap lengths.

worse) performance as (than) the current state-of-the-art in-
painting algorithm.
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(SParse Audio INpainter),” in 2019 27th European Signal Processing
Conference (EUSIPCO). IEEE, 2019, pp. 1–5.

[7] M. Lagrange, S. Marchand, and J.-B. Rault, “Long interpolation of audio
signals using linear prediction in sinusoidal modeling,” Journal of the
Audio Engineering Society, vol. 53, no. 10, pp. 891–905, 2005.

[8] N. Perraudin, N. Holighaus, P. Majdak, and P. Balazs, “Inpainting of
long audio segments with similarity graphs,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 26, no. 6, pp. 1083–
1094, 2018.

[9] A. Marafioti, N. Holighaus, P. Majdak, N. Perraudin et al., “Audio
inpainting of music by means of neural networks,” in Audio Engineering
Society Convention 146. Audio Engineering Society, 2019.

[10] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “A context
encoder for audio inpainting,” IEEE/ACM Trans. Audio, Speech and
Lang. Proc., vol. 27, no. 12, pp. 2362–2372, Dec. 2019.

[11] A. Marafioti, P. Majdak, N. Holighaus, and N. Perraudin, “GACELA:
A generative adversarial context encoder for long audio inpainting of
music,” IEEE Journal of Selected Topics in Signal Processing, vol. 15,
no. 1, pp. 120–131, 2021.

[12] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley, “Audio inpainting,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 3, pp. 922–932, 2011.
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