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Abstract—The matched phase reassignment, developed to
estimate phase synchrony of transient oscillatory signals, is
extended into a multitaper phase reassignment (MTPR) method.
The method gives perfect time-frequency localization for two
transients with zero phase difference and estimates of time
locations and oscillatory frequencies in low signal-to-noise ratios.
For different signal-to-noise ratios between channels a suggestion
of corrected reassignment vector expressions is given, resulting
in minimized variance. The MTPR outperforms the matched
phase reassignment as well as state-of-the-art methods, such as
Pearson’s linear correlation, time-frequency cross-spectrogram
phase estimation and the Phase Lag Index method. An example
of estimated phase differences, time locations and oscillatory
frequencies of electrical signals measured from the brain is also
shown.

Index Terms—time-frequency reassignment, oscillatory tran-
sient signals, phase synchronization, multitapers, EEG

I. INTRODUCTION

For the past decades, functional neuroimaging techniques
have produced impressive advances in knowledge of how
the brain mediates cognition and behavior. Recent analysis
developments leveraging machine learning have further shown
that it is possible to accurately decode the content of mental
representations based on brain activity [1]. For example,
magnetic resonance imaging (fMRI) data may be used to
classify semantic concepts [2]. However, in many cases, fMRI
cannot capture the relevant activity, and Electroencephalogra-
phy (EEG) is better suited to reveal the temporal dynamics
of neural activity [3]-[5]. Scalp-recorded EEG signals have
low signal-to-noise ratio (SNR), and methods robust to such
disturbances are much needed.

Often important information is found from the spatial loca-
tion of sources in the brain. To model the stream of informa-
tion processing underlying mental states and extract features
for reliable classification, both the brain signal’s spatial and
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temporal dynamics need to be extracted [6], [7]. Further, with
the attempt to actually capture the temporal dynamics, state-of-
the-art methods simultaneously expand the signal into time and
frequency, resulting in time-frequency (TF) representations.
However, the underlying general methods of TF spectra are
not optimally designed for resolving frequencies with temporal
dynamics and important information is often hidden. The main
drawback of commonly applied spectrograms is the limited
TF resolution, which is known to cause spectral leakage and
hidden information [8].

The reassignment technique is among the more popular
methods today for TF visualization of oscillatory information
[9]. For transient oscillatory signals we have invented a novel
method, the matched reassigned spectrogram for estimation
of the instantaneous time and frequency locations in the TF
plane [10]-[13]. In [14], the matched reassigned spectrogram
is expanded into a novel matched phase reassignment (MPR)
method based on the reassigned cross-spectrogram. It is shown
that for two phase synchronized oscillating transient signals,
the method gives perfect TF localization. For low SNRs,
degradation of the TF location estimates is seen, caused by
the reassignment vectors being sensitive to noise, [12].

Multitapers are used to reduce variance of spectra, and the
Hermite functions are the optimal choice with respect to TF
resolution and orthogonality in the TF domain [15]. In [16]
we presented a multitaper reassignment method, shown to
give a high precision in the time- and frequency estimates
in low SNR. In this paper we expand into a multitaper
phase reassignment (MTPR) method for measurement of phase
synchronization of two oscillatory transient signals.

The paper is outlined with preliminaries of the matched
reassigned spectrogram in section 2, followed by a short
overview of the multitaper reassignment in section 3. In
section 4, the novel MTPR technique is proposed together with
a suggestion for increased performance when SNR is differing
between channels. The novel phase estimator is evaluated and
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compared to state-of-the-art estimators in section 5 and in
section 6 an example of phase estimates from short transient
oscillatory responses in EEG signals are shown. Conclusions
are presented in section 7.

II. PRELIMINARIES

Given a signal z(t) the short-time Fourier transform (STFT)
using the window A(t) is

Fl(t,w) = /00 z(s)h*(s — t)e ™ds, (1)

— 00

where * is the complex conjugate. The corresponding spectro-
gram is found as

Sh(t,w) = |Fr(t,w). 2)
The reassigned spectrogram, where the spectrogram values are
relocated to the corresponding ¢, and w, is defined as

RSI(t,w) = / / . S (5, €)6(t —Fu(5,),0 — G5, )ds 3o ()

with [ f(t,w)d(t — to,w — wo)dtdw/2m = f(to,wo).
In [10], the scaled reassigned spectrogram was proposed for

which the reassignment vectors are computed with scaling
constants ¢, c,, as

. Fh(t,w)

h _ x )

tr(t,w) = t+aR (F;L(t,w) ) 4)
~h _ _ x FI% (t7w)
Wy, (t,W) = w CwS ( Fig(t,UJ) (5)

where R(e) anddh%(o) represent the real and imaginary parts,
and F'"(t,w),F," (t,w) are the STFTs of the signal z(t), with
t-h(t) and dh(t)/dt as window functions. In [10], this method
was shown to have perfect time-frequency localization for
estimation of Gaussian functions, which will be described in
the following section. For the original reassignment technique,
¢ =c¢, =1[9]

III. THE MULTITAPER REASSIGNED SPECTROGRAM

The novel multitaper phase reassignment proposed in the
following section stems from earlier works by the authors on
multitaper reassignment of spectrograms. The latter will now
be presented. Consider the oscillatory transient signal

x(t) = a(t — to)e ot (6)
with a Gaussian envelope
1
a(t) = ————e /(2% (7)
o\

In the matched window case h(t) = a(—t), the scaled
reassignment (4)-(5) with ¢; = ¢, = 2, reassigns all signal
energy to t"(t,w) = to, and &"(t,w) = wy [10]. To achieve
the TF localized reassignment for the second Hermite function

window
V2

te—tz/(Qo'z) (8)
od\/m

ha(t) =

orthogonal to h(t) = a(—t), we proposed in [16] that the
reassignment vector (4) is replaced by

dhy
. Fih2(t,w) F,7 (t,w)

"2 (tw) =t +dR | T—2" — 52 ’ 9
A=A T ) T e ) Y

and with d; = 1, all signal energy is reassigned to "2 (t,w) =
to. Similarly, (5) is replaced by

dho
F. 7 (t 1 Fit2(t
F12(taw) g sz(t7w)

and with d,, = 1, all signal energy is reassigned to "2 (t,w) =
wp [16]. Further, a multitaper reassigned spectrogram is pro-
posed in [16] that average the reassignment vectors of the
matched and non-matched reassigned spectrograms described
above. In the following section, this idea will be applied to
phase reassignment.

IV. THE MULTITAPER PHASE REASSIGNMENT

The matched phase reassignment [14], is a TF local measure
of phase synchronization, where we define pairs of oscillatory
transients with different amplitudes and phases as
Yn(t) = Apz(t)e " +e,(t) n=1,2 (11
where n = 1,2 are two separate channels, x(t) is defined
as in (6) and the noise terms e; and ey also might have
different variances, denoted s? and s3. The corresponding
cross-spectrogram is
S (tw) = FlL (4, w)(FL (t,w))"

Y1,2 Y1 Y2 (12)
and the reassigned cross-spectrogram is found by replacing
Sk(t,w) with the absolute value S} (¢,w)| in (3). In [14]
we suggested the following novel expressions as reassignment

vectors,

) Fth Fth

th = t+eR| 2+ -2 (13)
" <Fz7 Fy,

~h _ Cx Y1 Y2

@ = w—0c,9 + (14)
Y1,2 (ngg Fyhl >

where we have dropped (¢,w) in the expressions for conve-
nience. The scaling factors ¢; and ¢, are amplitude adjusted
according to

A1 A

2T (15

Ct = Cy =

When ¢; = ¢2, i.e. phase synchronization, (13,14) reduce
to (4,5) with perfect TF localization to tZ;Z(t,w) = to and

oM (tw) = wp if h(t) = a(—t) [14].

Y1,2
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In the case that the variances of the noise signals e, in
Eq. (11) differ and can be estimated, we propose the following
alternative reassignment

Fth th
th _ Y1 Y2
ty172 =t + §R Ct,l F;’ + Ct,2 Fh‘ ) (16)
2 Y1
(21‘71}1‘2 =w-S (Cw,lFZ‘J; + Cw,QFZ‘JZ> . (17)
Y2 Y1

Given h(t) = a(—t) and through the use of Gauss’s approxi-
mation of variance of quotients, it can be shown that the choice

—o s s,

153 + A3sy
is optimal to minimize the variance of (17), for ¢ close to
to. Note that if s; = so we come back to (15). However, (17)
will not be utilized in the novel multitaper phase reassignment
method proposed next.

For lower variance of the final phase reassignment, we
propose the averaging of reassignment vectors. The vectors
in (13,14) with h(t) = hq(t) = a(—t) are averaged with the
corresponding second Hermite function reassignment vectors
similar to the expressions in (9,10) giving

R 1 Fthl Fthl
thl,z =t+ §Ct§R ( Y1 + Y2 +

[Ct,1 Ct,2]

Y1,2 h h
Fyzl Fy11
dhy dhy
tho tho dt dt
Lo (D T o (B P (18)
2 t th Fh2 th Fh2
Y2 Y1 Y2 Y1
and
dhy dhq
d d
~hio 1 <% Fyl ' Fy2 '
OJyL'z =W — icw\f Fhl Fh1 —
Y2 Y1
dhy dhy th th
d dt 2 2
}d & F‘ylt =+ Fny o i Fy1 4 EJQ (19)
Y2 Y1 Y2 Y1

We refer to this method as multitaper phase reassignment
(MTPR) and focus on equal amplitude signals, i.e. A; = A,
resulting in simplification of the scaling parameters to ¢; =
co=2and d; =d, = 1.

V. SIMULATIONS

Signal pairs y;(t) and yo(t) are defined by the real part
of Eq. (11) and with parameters 4y = As = 1, tg = 50,
wo = 0.620, and ¢ = ¢ € U[—7 7|. Independent Gaussian
white noise (GWN) sequences are added to the signals, with
SNR defined as the average power of the signal within £30
of the envelope to the noise variance. An example of y;(¢) is
presented in Figure la, light blue line and with the envelope
marked with a dotted green line with an example of SNR=3 dB
as the dash-dotted blue line. We simulate y4(t), t = 0...99,
and ya(t), ¢ = k...99 + k, where y2(t) can be shifted
for values of £k = —5...5 with £k = 0 representing phase
synchrony of the two signals in the pair. A few examples of

a) y1(t] and disturbance example
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Fig. 1. a) The figure shows the transient oscillating signal (light blue line) with
envelope (dotted green line), and the dash-dotted blue line shows an example
of the signal in Gaussian white noise (GWN), 3 dB; b) A corresponding
simulated signal y2(t) where phase synchronization with yi(¢) in a) is
received for k = 0 (red line).

the set representing the various shifted yo(¢) are presented in
Figure 1b.

We evaluate the MTPR performance and compare with the
MPR and a number of state-ot-the-art estimators for their
ability to detect phase synchrony at the time-shift of k& = 0,
comparing to all possible cases k # 0. For the MTPR and
MPR, the Rényi entropy with o = 3 is used as measure,
where a minimum value over different values of £ is taken as
measure of synchronization [17]. The resulting optimal I%Opt is
compared with the same evaluation using a number of state-of-
the-art phase estimators, such as the commonly applied time-
based Pearson’s linear correlation (CORR), time-frequency
cross-spectrogram phase (XSP) [8], and Phase Lag Index (PLI)
[18]. For CORR, l%opt is naturally the corresponding k for the
largest correlation value. The cross-spectrogram of the XSP
is computed using the matched Gaussian window, and the re-
sulting phase estimate is found as the average of the extracted
phases at the maximum absolute value at each time point. The
PLI is calculated from the signals’ Hilbert transforms and the
corresponding angle differences, reconstructed into positive
or negative values using the sign operator, are then finally
averaged. The optimal phase estimates for XSP and PLI are
the ones closest to zero.

1) Simulation 1: The simulation is repeated 1000 times for
SNR ranging from 50 dB to -6 dB, and the percentage of
correct estimates is defined as |kop| < 1. The results are
shown in Figure 2a, where we see that the results of MTPR,
MPR and CORR have a similar performance, with 100%
correct phase estimates for values larger than SNR=10 dB. For
lower SNR, closer to SNR=0 dB, the MTPR outperforms the
MPR and CORR, showing the value of averaged reassignment
vectors in high noise levels.
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Fig. 2. Percentage of correct estimates for all methods and different SNRs;
a) Simulation 1, transient oscillating signal in GWN disturbance; b) Simu-
lation 2, transient oscillating signal in GWN disturbance and with transient
disturbances di (t) and dz(¢) as defined in Eq. (20) of opposite phases.

2) Simulation 2: In simulation 2 we introduce additional
transient disturbances into y;(¢) and yo(t), defined by

dn(t) = Aga(t — tg)e @ate=i®an =12  (20)

where both have the same Gaussian envelopes as the actual
signal, and A; = 1, t; = 50, wg = 1.257. The phases are
¢qa1 = 1.89 and ¢4 = 5.03, resulting in opposite phases.
The transient disturbances show up at the same time as the
original signal, with the same amplitude, but the frequency
is different from the signals oscillating frequency. The (local)
SNR is defined similarly as before (excluding d,,(¢)) and is
evaluated over the same range as in simulation 1.

The MTPR, MPR as well as the XSP could be restricted to
be evaluated locally in frequency. However, in this simulation
we choose to include the whole time and frequency range of
the TF spectrum of these methods to make a fair comparison
between the time-based and the TF based methods. We do not
use any a priori information of the transient disturbance TF
location. The results are shown in Figure 2b. The results of
MTPR and MPR are now superior to all the other methods due
to the ability to estimate the phase synchronization correctly
for all repetitions at least down to SNR=10 dB, where the
MTPR gives 100% correct estimates and MPR somewhat
lower. For all the other methods the degradation is severe.

VI. ELECTROENCEPHALOGRAM EXAMPLE

We also compare all methods using an example of phase dif-
ference estimation of Electroencephalogram (EEG) data mea-
sured during a visual stimulation with a 9 Hz flickering light
(Grass Photic stimulator Model PS22C). Data was recorded
using a Neuroscan system with a digital amplifier (SYNAMP
5080, Neuro Scan, Inc.). Amplifier band-pass settings were
0.3 and 50 Hz and the sample rate was 256 Hz. The light
stimulation lasted for the time interval of about 1 s so the

a) Data channel Pz b) Spectrogram Pz
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Fig. 3. a) Data measured from channel Pz; b) The corresponding spectrogram
with the limits for the phase analysis marked as a white box.
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Fig. 4. The spatial distribution of the peak power for all different channels.

MTPR, MPR and XSP are all using a Gaussian window of 0.7
s, measured as the time of the range +3c0. The subject had
closed eyes and the flickering light was flashed at the subject
from a distance of approximately 1 m. From the collected data,
shorter sequences were extracted for further analysis. We focus
on the time interval of the flickering light, which is starting at
the time point of 0.5 s in the data example seen in Figure 3a.
The corresponding spectrogram is visualized in Figure 3b
where also TF limits for the phase analysis is indicated with
the white box. In Figure 4 the spatial distribution of the peak
power inside these limits, measured from the spectrogram, is
depicted.

From the corresponding reassigned spectrogram, the time-
and frequency indices of the peaks are found for all different
channels, see Figure 5a and b respectively, where the channel
numbers correspond to the order of the channels according to
F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, O2. It is clearly
seen that the peak location is stable between channels. For the
phase difference estimation, one channel is time-shifted until
the best synchronization is found, and the time-shift is used as
estimate of the phase difference. All channels are compared to
the occipital channel Oz, placed above the primary visual area.
The frequency range is limited to 7-12 Hz using an FIR band-
pass filter of length 200 applied to the measured signals used
for analysis with the CORR and PLI methods. The amplitudes
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a) Time locations b) Frequency locations
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Fig. 5. a) Time locations and b) frequency locations of the reassigned
spectrogram peak for all different channels ordered according to F3, Fz, F4,
C3, Cz, C4, P3, Pz, P4, O1, Oz, O2.

a) MTPR

Fig. 6. The figures show the time-differences in ms of all channels compared
to channel Oz (located in the middle back).

Ay and A, are estimated from the maxima of F;l (t,w) and
F;Q (t,w) in the chosen time-frequency limits and included in
Eq. (15).

A smaller phase difference should naturally be found for
channels closer to Oz whereas a larger difference is expected
for channels closer to the eyes. The phase pattern should also
be symmetrical with respect to left and right side of the head
as the origin is Oz. The results of MTPR, MPR, PLI and
CORR are seen in Figure 6 with the colors representing the
phase difference in ms. The results of XSP do not show the
expected phase difference and is therefore not visualized. For
the other methods we see the expected larger values for the
frontal channels F3, Fz, and F4. For all methods, there is a
small tendency for larger phase values on the left side. The
MTPR, PLI and CORR all give close to zero phase difference
for channel Oz. This is not the case for MPR, indicating that
this method is unreliable. The estimated phase for channel Fz
is also very large (39 ms) compared to the values of the other
methods. Similarly we note that the phase estimate for O1 of
PLI is too large (35 ms). The MTPR and CORR show similar
patterns but the estimated phases of MTPR are generally 5 ms
smaller than the estimated phases of CORR.

VII. CONCLUSIONS

A Multitaper Phase Reassignment (MTPR) method is pro-
posed for robust estimation of the phase synchrony between
two short oscillatory transient signals. The MTPR method
is evaluated for phase estimation, by time-shifting one of
the signals for the the optimal phase synchronization. The
method’s evaluation has shown to better estimate the phase
difference with respect to other state-of-the-art methods both
in simulations and in the real EEG data case.
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