
Inferring Graph Signal Translations as
Invariant Transformations for Classification Tasks

Raphaël Baena, Lucas Drumetz, Vincent Gripon
IMT Atlantique and Lab-STICC,
name.surname@imt-atlantique.fr

Abstract—The field of Graph Signal Processing (GSP) has
proposed tools to generalize harmonic analysis to complex
domains represented through graphs. Among these tools are
translations, which are required to define many others. Most
works propose to define translations using solely the graph
structure (i.e. edges). Such a problem is ill-posed in general as a
graph conveys information about neighborhood but not about
directions. In this paper, we propose to infer translations as
edge-constrained operations that make a supervised classification
problem invariant using a deep learning framework. As such, our
methodology uses both the graph structure and labeled signals
to infer translations. We perform experiments with regular 2D
images and abstract hyperlink networks to show the effectiveness
of the proposed methodology in inferring meaningful translations
for signals supported on graphs.

Index Terms—graph signal translation, deep learning, classifi-
cation, invariant operators

I. INTRODUCTION

Translations are among the most fundamental transforma-
tions in signal processing. They are often used as a basic
building block to define convolutions, Fourier transform, filters
and related tools. In machine learning, they can be exploited to
define ad-hoc operators that benefit from the underlying simple
regular structure of processed signals, such as in the case of
Convolutional Neural Networks (CNNs). As a matter of fact,
CNNs were introduced because they can be made invariant
to translations when combined with downsampling operators,
which is often desirable in practice.

Recently, the field of Graph Signal Processing (GSP) arose
with the aim of generalizing classical harmonic analysis to
irregular domains described using graphs [1]. Among the
numerous tools that were introduced in this field, translation
has attracted a lot of attention [2]. Contrary to the case of
nD structures, defining translations for graph signals can be
challenging. Incidentally, graphs can represent very regular
structures (e.g. sensor network) as well as abstract ones (e.g.
social network) and the definition of translations and hence
harmonic operators should be sensible for these domains.

In the early days of GSP, the Graph Fourier Transform
(GFT) was introduced without relying on translations [3].
Convolutions could then be defined by simple pointwise multi-
plications in the graph spectral domain. Translations were then
obtained by particularizing convolutions with Dirac signals.
Later in [4] the authors pointed out that this operator was not
an isometry. They proposed alternative definitions based on
complex exponentials of the Laplacian matrix of the consid-

ered graph. Problematically, these operators do not generalize
well classical circular translations on signals defined on grid
graphs. Using a completely different approach, the authors
in [5] defined translations of graph signals directly in the
vertex domain (without using the GFT), thus providing an
actual generalization of classical tools. Still, this approach
comes with a large computational complexity, and struggles
with abstract and irregular graph structures.

There are fundamental reasons why it is so challenging to
define translations for graph signals. One of them is that a
graph typically encompasses a notion of neighborhood (or
similarity) between its vertices. On the other hand, translations
are defined using directions, which are typically not explicitly
available or even meaningful when considering a graph [5].
In this work, we would like to propose inferring graph signal
translations using not only the graph, but also additional
information such as annotated signals on this graph.

Our solution builds upon the idea of translational invariance
of classification tasks. In more details, given a graph and
samples that belong to distinct classes, we aim at inferring
operators constrained by the graph structure and that allow
to define weight-sharing deep learning architectures that reach
high accuracy on the considered classification task. As such,
the inferred operators can be interpreted as transformations
that are invariant for the considered task. In the case of
regular nD signals, we would expect these transformations to
include classical translations, but also possibly other operators
such as directional dilations or contractions. Interestingly,
this approach does not require strong assumptions about the
regularity of the graph structure, and can thus be deployed
even for abstract domains such as relational networks.

II. RELATED WORK

Let us consider a graph G = 〈V,E〉, where V is a finite set
of vertices and E is a set of pair of vertices called the edges.
Such a graph can be conveniently expressed using its binary
adjacency matrix A defined as:

A[i, j] =

{
1 if (i, j) ∈ E
0 otherwise . (1)

The degree matrix of G is defined as:

D[i, j] =

{ ∑
i′∈V A[i, i′] if i = j

0 otherwise . (2)

2169ISBN: 978-9-0827-9706-0 EUSIPCO 2021



In the field of spectral graph theory, it is common to also
introduce the (combinatorial) Laplacian of the graph as the
matrix defined as L = D−A.

In this work, we are interested in processing signals on
graphs. A graph signal is a vector s ∈ RV . Of particular
interest are Dirac signals which are simple one-hot vectors.

The field of GSP introduces tools to manipulate signals on
graphs. These tools include convolutions, filtering, smoothing,
translations. . . The rationale is that such operators are defined
by taking into account the graph structure (i.e. the graph
edges). In the particular case where the considered graph is
an oriented ring graph, the tools defined by the framework of
GSP perfectly match the ones defined for 1D signals [3].

This matching does not necessarily hold for more complex
graph structures. In particular, considering regular 2D grid
graphs, the operators defined using the GSP toolbox typically
differ from the traditional 2D corresponding ones [5]. Inciden-
tally, defining a graph signal translation operator is challeng-
ing, because a graph structure only encompasses information
about neighborhood of vertices and not directionality [5].

In the early days of GSP, translations were defined on
top of convolutions. As a matter of fact, the authors in [2]
propose a definition of GFT of a signal s by simply projecting
s to a basis where the Laplacian of the graph is diagonal.
The inverse GFT can be obtained by projecting backwards
to the canonical basis. Then, in [6], [7] the authors define
convolutions in three steps: first they compute the GFT of
considered signals, then they pointwise multiply their spectral
coordinates, and finally they perform an inverse GFT on the
resulting vector. Graph signal translations can then be obtained
by convolving signals with a Dirac. The authors of [4] point
out in their paper that these translations are not isometric. They
introduce alternative definitions using complex exponentials of
the Laplacian matrix. Problematically, the definitions in [6],
[7], [4] do not properly generalize translations for signals on
graphs, because, as we pointed out previously, these operators
typically do not match the expected ones when considering
regular 2D grid graphs. As a matter of fact, the translations
defined in [3] are isotropic.

In [8], the authors aim at identifying directions or relevant
graph motifs in order to define graph signal convolutions.
These motifs represent meaningful connectivity patterns, e.g
triangle motifs which are crucial for social networks [9]. Once
a set of motifs is chosen, nonisotropic Laplacians are defined
for each one. Convolutions are then defined as multivariate
polynomial of the Laplacian matrices. Two key issues with
this methods are the huge amount of parameters it relies upon
and the difficulty of choosing relevant motifs.

With the purpose of proposing graph signal operators that
fully match the expected ones for regular grid graphs, the
authors in [5] introduce a definition of translations directly
in the vertex domain (i.e. that does not use the GFT).
In their work they characterize translations as functions φ,
defined from a subset of vertices V ′, that are i) injective
(φ(v) = φ(v′) ⇒ v = v′,∀v, v′ ∈ V ′), ii) edge-constrained
((v, φ(v)) ∈ E,∀v ∈ V ′) and iii) neighborhood-preserving

((v, v′) ∈ E ⇔ (φ(v), φ(v′)) ∈ E,∀v, v′ ∈ V ′). Injectivity
and neighborhood-preservation are key characteristics to en-
sure the matching with regular translations, but they are poorly
suited for abstract graph structures such as social networks.

In [10], the authors introduce pseudo-convolutions for deep
neural networks that can be seen as implementing the edge
constraint previously introduced. Namely, they introduce a
tensor S and a vector w. The binary tensor S is of dimension
N ×N ×K, where N is the number of vertices in the consid-
ered graph and K is a hyperparameter. Moreover, S[i, j, k] is
zero if (i, j) 6∈ E, and S[i, j, :] contains at most one nonzero
entry. The vector w contains K coordinates. The tensor-matrix
product along the third mode of S by w, denoted as S ×3 w
creates a N × N matrix W that can be seen as a weighted
version of the adjacency matrix A of the considered graph.
The authors show that for particular choices of S, they can
retrieve classical convolutions for regular grid graphs. More
generally, slices S[:, :, k] can be interpreted as graph signal
translations. In this paper, we propose to infer the tensor S
using both the graph structure and a set of labeled signals.

III. PROBLEM STATEMENT AND METHODOLOGY

The rationale behind CNNs is to exploit the invariance of
input labels to translations [11], which is achieved through
weight sharing schemes. In more details, translations are used
to define convolutions. When convolutions are combined with
pooling operations, they can produce representations that are
invariant with respect to translations. Resulting CNNs can
obtain significant gains in accuracy compared to translation-
agnostic architectures such as multi-layer perceptrons [11].

The key idea of our proposed methodology is to reverse this
reasoning. Namely, we propose to define learnable operators
that are aligned with the graph structure, from which we
build pseudo-convolutions by learning ad-hoc weight sharing
schemes. Combined with pooling, we obtain architectures
that can be trained end-to-end to solve classification tasks.
Once a network with good performance is found, we can
then assimilate our learned operators as pseudo-translations,
or more generally classification invariant operations.

In more details, let us consider a simple example where
the graph is a ring with adjacency matrix A. Let us suppose
that we consider a periodic graph signal s made of N = 4
dimensions, on which we can operate k = 3 translations de-
noted through their matrix representations (Tk), where Tk ∈

RN×N . For this simple example T0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 will be

the identity, T1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 and T2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


circular translations corresponding to the two orientations of
the ring. We build a tensor S ∈ RN×N×K by concatenating

2170



x GSL1 GSLn Pool FC SM y

Fig. 1: Depiction of the used deep learning architecture. GSL
stands for Graph-Signal Layer, Pool for a global average pool-
ing, FC for a fully connected layer and SM for a softmax.

matrices (Tk)k. We also define a convolutional kernel vector
w indexed by the K possible translations. Then it holds that:

S×3 w =
∑
k

w[k]S[:, :, k]

=
∑
k

w[k](Tk)

=


w0 w2 0 w1

w1 w0 w2 0
0 w1 w0 w2

w2 0 w1 w0

 . (3)

We indeed recognize a Toeplitz circulant convolution ma-
trix. These equations can be generalized for any regular nD
graph easily, and to any graph by constraining the structure of
S. The graph convolution operation ? can be then defined as:

s ?w = s>(S×3 w). (4)

We propose to learn matrices (Tk)k by optimizing a deep
neural network meant to classify graph signals, under the
constraint that Tk[i, j] 6= 0 ⇐ A[i, j] 6= 0, where A is
the graph adjacency matrix. In other words, (Tk)k are edge
constrained transformations.

A. Problem Statement

For the sake of simplicity, we describe here the processing
of tensors with only one filter, that is to say a single w. Note
that all the equations of this section could be generalized to
the case of multiple filters, which boils down to adding a
dimension to all tensors and computations presented thereafter.

Let us recall that a deep neural network can be described by
a function f mapping the input to the output. The function f
is obtained by assembling elementary functions, called layers,
that are most of the time of the form: x 7→ σ(Wx + b),
where W is a weight matrix, b is a bias vector and σ
is a nonlinear function, usually parameter-free and applied
component-wise. The weight matrix and its associated bias
vector are the trainable parameters θ of the network.

In the case of classification, the aim is to train f to map
raw inputs (e.g. images) to their corresponding class. For that
matter, we typically use two datasets, a training one, denoted
Dtrain, that is used to learn the parameters and a validation
one used to stress the ability of the trained function f to
correctly predict the class of previously unseen inputs. Also,
the network function f ends by applying a softmax operator.

The most typical setting for training a classifier is to rely
on a cross-entropy loss function L. Denoting (x, y) ∈ Dtrain
where x is an input and y its corresponding output, we have:

L(x, y) = − log(f(x)[y]).

The deep neural network function f is optimized to solve
the following problem:

argmin
θ

∑
(x,y)∈Dtrain

L(x, y).

In practice, variants of the Stochastic Gradient Descent
algorithm are often used for this optimization.

Of particular interest for vision tasks are convolutional lay-
ers, in which the weight tensor W implements a convolution
operator. In our case, we do not have an explicit access to
translations, hence to convolutions. Thus we rather make use
of Graph-Signal Layers (GSLs): s 7→ σ(s>(S×3 w)), where
slices S[:, :, k] are edge-constrained:

S[i, j, k] 6= 0⇐ A[i, j] 6= 0.

Given Equation (3), this layer is a generalization of convo-
lutional layers. Multiple GSLs can be defined, each with its
own weight vector w, but sharing the same global S.

Let us now imagine that we are given a deep neural net-
work function f , with parameters {S, ω, θ}, containing some
GSLs. Here S represents the graph transformations (which are
implicit in CNNs), ω are the parameters of the GSLs, and θ
are the remaining parameters (e.g. for fully connected layers).
The problem we aim at solving is to find:

arg min
S,ω,θ

∑
(x,y)∈Dtrain

L(x, y).

Specifically, we are interested in solutions in which S[i, :, k]
are one-hot vectors, so that slices S[:, :, k] can be interpreted as
pseudo-translations. In the next subsection, we delve in more
details in how we propose to enforce this constraint.

B. Methodology

As stated in the introduction, convolutional neural networks,
when they are built with pooling layers, have the asset of
producing translation invariant decisions. However, performing
pooling on graph signals can be hard, because it requires
computing graph downsampling [2]. This is why in this
paper, we adopt a simple workaround where we only perform
a single pooling operation at the penultimate layer of our
proposed architecture, right before the final fully connected
layer. This pooling is global, so that it completely shrinks the
graph dimension: all vertices values are averaged in a single
value, for each considered filter. A depiction of the proposed
architecture is available in Figure 1.

Optimizing deep neural network functions over a discrete
domain is a hard task [12], since it involves binary matrix
constraints, which are not straightforward to enforce. Because
our aim is to obtain one-hot vectors, which is similar to [13],
we adopt the same strategy. Namely, we apply a softmax
operator over the second dimension of S, with a varying
temperature t (x 7→ softmax(x/t)). This temperature starts
with value tinit, typically large, in which case the softmax
operator has the effect of making the lines S[i, :, k] constant
where defined (recall that S[:, :, k] is edge-constrained). At the
end of the training, the final temperature is tfinal, typically

2171



↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ← ← ↓
← → ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ →
← ← ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
← ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ →
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ → ↑
↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ←

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ → ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
→ ↑ → ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ←

→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
→ → → ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ←←
↑ → → ← → ↑ ← ↑ ↑ ↑ ← ← → ←

(a) T0

↑ ↑ → ← → ← → ↓ → ↑
↓

← → ↓
↓ ↑ →

↓
↑ ←

↓

↓
↓ ↑ ↓
↓ ↓ ↓
↓ → ↓
← → ← ← ← ← ← ← → → → ← → ←→

(b) T1

↑ ↑ → → → ← → → ↓ ↓ ↑ ↑
↓ ← → → ← → → ← ← ← ↓ → ↓
← ↓ → → → → → → ← ← ← ← ← ← ↓
↓ ↑ → → → → → → ← ← ← ← ← ← ←→
→ → → → → → → → ← ← ← ← ← ← ← ↓
↑ → → → → → → → ← ← ← ← ← ←
← → → → → → → ← ← ← ← ← ← ← ←←
→ → → → → → → → ← ← ← ← ← → ←
↓ → → → → → → ← ← ← ← ← ← ← ←
↓ → → → → → → ← → ← ← → ← ← →
→ ↓ → → ← → → → → ← ← ← → ← ↓ ↓
↑ → ← ← → ← → ← ← ← ← ← ← ↑
↓ ← → → ← → ← ← ← ← ← → → ← ↓ ↓
↑ ← ← ← → ← → ← ← ← → ← → ↓ ↑
→ → ↓ → ← ↓ ← ← → → ← ←←

(c) T2

→ ← → ↓ ↓ ← ↑ → → ↓ ↑ ↓ ↑ ←
↑ ↓ ← ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓
↑ ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ → ↑
↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑
→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑

← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ←
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ →
← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ →
↑ ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ →→
← ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ →→
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
← ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ →→

← ↓ ↓ ↓ → ↓ → ↓ → → ↓ → ↓ →←

(d) T3

← ↑ ↑ ↓ ↑ → → → ↑ ↑ ↑ → → ↑ ↑ ↓
← ↑ ← ↑ ↑ ↑ ↓ ↑ → → ↑ ↑ ↑ ↓ →→
← ← ← ← ← ← ↑ ↑ ↑ → → → ↑ ↑ ↑ ↑
← ← ← ← ← ← ← ← ← ↑ → → → → →→
↓ ← ← ← ← ← ← ← → → → → → → →→
← ← ← ← ← ← ← → → → → → → → →
← ← ← ← ← ← ← ← ← → → → → → →→
↑ ← ← ← ← ← ← ← ← → → → → → → ↑
↓ ← ← ← ← ← ← → → → → → → → →
← ← ← ← ← ← ← ← → ← → → → → → ↓

→ ← ← ← ← ← ← → → → → → → ↓
↓ ← ← ← ← ← → → → → → →
↓ ↓ ← ← ← ← → → → → → → ↓
↑ → ← ← ← ← → → → → → → ↓

↓ ← → ← ← → → ← → → ↑

(e) T4

Fig. 2: Depiction of inferred pseudo-translations when considering the CIFAR-10 dataset on a regular 2D grid graph.

small, so that the softmax boils down to a regular max
operator, transforming lines S[i, :, k] into one-hot vectors.

We experimented with various strategies to interpolate the
temperature between tinit and tfinal. Our most consistent
results were obtained using an exponential interpolation:

t(s) = tinit (tfinal/tinit)
s/stotal ,

where s is the current step in the training phase, and stotal
is the total number of steps used for training. At the end of
the training process, we use a temperature of 0 to interpret the
slices of S[:, :, k] as pseudo-translations. In the next section,
we present experiments on toy and real datasets.

IV. EXPERIMENTS

In this section we present experiments on various types
of graphs from very regular structures (images supported on
2D grid graphs) to abstract ones (hyperlink networks). We
evaluate our method on two datasets: CIFAR-10 [14] and
webKB [15]. CIFAR-10 is a classification dataset of images
made of 32×32 pixels with three primary colors grouped in 10
classes. WebKB is a dataset composed of 877 web pages from
computer science departments of universities classified into
one of five classes (student, project, course, staff, and faculty).
The dataset contains word-based feature vectors of dimension
1703 for each of the websites, as well as a hyperlink graph.
This dataset is typically used in contexts of semi-supervised
classification, where only a portion of the websites are labeled.

A. Sanity check with regular grid graphs

In our first experiment, we aim at verifying the ability of
our proposed method to retrieve classical translations when
dealing with 2D signals and structures. To this end, we use
the CIFAR-10 dataset downscaled to 16×16 pixel images and
suppose given a regular grid graph for supporting the image
signals. In more details, the grid graph is such that a vertex
corresponds to a pixel, and each pixel is connected through
the edges to its four direct neighbors.

In Figure 2, we depict the result of our proposed method.
An inferred pseudo-translation T is represented in a grid of
size 16 × 16. For each vertex we represent by an arrow the
neighbor vertex it is associated with through T (recall that
inferred pseudo-translations are edge-constrained, so that this
representation is well defined). For each Tk, we highlight

(a) original image (b) T0 (c) T1

(d) T2 (e) T3 (f) translation of [6]

Fig. 3: Inferred translations T0, T1, · · · , T3 and comparison
with the translation defined in [6] on a near-regular graph.

the vertices that correspond to the majority direction. Inter-
estingly, we observe that T0 and T3 tend to approach regular
translations. Note that T1 is almost the identity function. Sur-
prisingly, we observe that T4 and T2 resembles respectively
an horizontal dilation and compression. As a matter of fact,
such transformations are valid in our framework and would
typically be invariant for the classification problem at hand.

B. Experiments with a near-regular inferred graph structure

In our second experiment, we use an inferred graph structure
that is obtained by computing the covariance matrix from the
training set of CIFAR-10, and thresholding to keep only the
5 nearest neighbors of each vertex (including self-loops). The
inferred graph structure is not as regular as the previously used
2D grid graph even though it remains similar.

Due to the non-regular structure of the graph it is not
possible to use the same representation than in Figure 2.
Therefore we illustrate the obtained transformations by ap-
plying them directly on an arbitrarily selected input image.
Results are shown in Figure 3. We can clearly see that obtained
transformations are not exactly classical translations, but most
of them are interpretable: T0 look likes a vertical translation,
T2 the identity, T1 and T3 horizontal dilation and contraction.

2172



10−4 10−3 10−2 10−1 100 101
0%

20%

40%

60%

80%

final temperature tfinal

di
st

an
ce

,a
cc

ur
ac

y

Fig. 4: Impact of tfinit on the accuracy (black) and distance of
the obtained translation : identity (orange), up (green), down
(purple), dilation (blue), and the average distance (red).

C. Experiments with hyperlink networks

To illustrate the genericity of the approach, we next run
an experiment with the WebKB dataset. For lack of a better
method to evaluate the obtained transformations, we compare
the accuracy achieved using the proposed methodology with a
standard method from the literature: graph convolutional neu-
ral network GCN [16]. We averaged the obtained accuracy on
10 different splits of training/validation/test sets. GCN obtains
an average of 86% and our method 87%. Note that GCN
and the proposed methodology reach similar performance,
yet the two systems are quite different: GCN uses isotropic
diffusion of signals, whereas we focus on directional inferred
translations. Moreover, contrary to GCN, our approach is not
designed to optimize classification performance but to infer
meaningful edge-constrained transformations.

D. Influence of hyperparameters

Finally, in a last series of experiments, we illustrate the
sensitivity of the proposed method with respect to the hy-
perparameters tinit and tfinal. In Figure 4, we fix tinit and
vary tfinal, whereas in Figure 5, we fix tfinal and vary
tinit. In these experiments we evaluate the impacts of the
initial and final temperatures on the accuracy of the network
and the transformations obtained. The “distance” measures
the number of differences between obtained transformations
and the closest 2D translation, dilation or contraction. For
this evaluation we use CIFAR-10 dataset and assume that the
images rely on the grid-graph. As can be observed, the method
is quite robust to changes in these hyperparameters.

V. CONCLUSION

In this paper we have introduced a new methodology based
on deep learning to infer graph signal translations from both
a graph structure and a set of labeled signals. We empirically
showed that this methodology is able to retrieve usual 2D
translations from regular images. We also conducted experi-
ments on an abstract hyperlink network and obtained perfor-
mance similar to that of state-of-the-art. There are many open
questions following this work, including other possible ways

10−1 100 101 102 103
0%

20%

40%

60%

80%

initial temperature tinit

di
st

an
ce

,a
cc

ur
ac

y

Fig. 5: Impact of tinit on the accuracy (black) and distance of
the obtained translation : identity (orange), up (green), down
(purple), dilation (blue), and the average distance (red).

to infer translations using labeled graph signals, better choice
of hyperparameters, design of deep learning architectures and
of the classification dataset.

REFERENCES

[1] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and appli-
cations,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[2] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
2013.

[3] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 7, pp.
1644–1656, 2013.

[4] B. Girault, P. Gonçalves, and E. Fleury, “Translation on graphs: An
isometric shift operator,” IEEE Signal Processing Letters, vol. 22, no. 12,
pp. 2416–2420, 2015.

[5] B. Pasdeloup, V. Gripon, J.-C. Vialatte, N. Grelier, and D. Pastor, “A
neighborhood-preserving translation operator on graphs,” 2018.

[6] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129–150, Mar. 2011. [Online].
Available: https://hal.inria.fr/inria-00541855

[7] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph
fourier transform,” in 2012 IEEE Statistical Signal Processing Workshop
(SSP), 2012, pp. 133–136.

[8] F. Monti, K. Otness, and M. M. Bronstein, “Motifnet: A motif-based
graph convolutional network for directed graphs,” in 2018 IEEE Data
Science Workshop (DSW), 2018, pp. 225–228.

[9] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization
of complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.

[10] J.-C. Vialatte, V. Gripon, and G. Coppin, “Learning local receptive fields
and their weight sharing scheme on graphs,” 2017.

[11] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, 2010, pp. 253–256.

[12] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016.

[13] G. B. Hacene, C. Lassance, V. Gripon, M. Courbariaux, and Y. Bengio,
“Attention based pruning for shift networks,” 2019.

[14] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[15] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-gcn:
Geometric graph convolutional networks,” 2020.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017.

2173


