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Abstract—Large-scale distributed training has recently been
proposed as a solution to speed-up the training of deep neural
networks on huge datasets. Distributed training, however, entails
high communication rates for gradient exchange among com-
puting nodes and requires expensive high-bandwidth network
infrastructure. Various gradient compression methods have been
proposed to overcome this limitation, including sparsification,
quantization, and entropy encoding of the gradients. However,
most existing methods leverage only the intra-node information
redundancy, that is, they compress gradients at each node
independently. In contrast, we advocate that the gradients across
the nodes are correlated and propose a method to leverage
this inter-node redundancy to obtain higher compression rates.
In this work, we propose the Learned Gradient Compression
(LGC) framework to reduce communication rates within a
distributed training with the parameter server communication
protocol. Our framework leverages an autoencoder to capture
the common information in the gradients of the distributed
nodes and eliminate the transmission of redundant information.
Our experiments show that the proposed approach achieves
significantly higher gradient compression ratios than state-of-the-
art approaches like DGC and ScaleCom.

Index Terms—Deep learning, data-parallel distributed training,
gradient compression, autoencoders.

I. INTRODUCTION

In recent years, the progress in the field of deep learning
has been achieved by training models with a large number of
parameters on a huge amount of data. With the growth in the
model parameters and the dataset size, the training of such
models using a single machine becomes very expensive in
terms of latency. One solution to this problem can be training
in a number of computing nodes in parallel, a.k.a., distributed
training [1]. One of the most used methods is data-parallel
distributed training [2], where each node has a replica (i.e., a
copy) of the model and access to a chunk of the data. In data-
parallel distributed training, due to the transmission of gradients
from one node to the other, there can be a communication
and latency overhead. The size of these gradients can reach
hundreds of megabytes (MBs) per iteration. For example, the
size of the gradient tensor of the ResNet101 [3] is 170MB.
This paper focuses on data-parallel distributed training and
proposes a new framework to reduce the overhead caused by
the transfer of the gradients.

Various methods have been proposed to tackle the problem
of communication overhead caused by the transmission of large
gradients. These methods include gradient sparsification [4]–
[6], quantization [6], [7] and entropy coding [8]. Gradient

sparsification methods transfer a portion of the gradient
(instead of the full gradient) depending on some importance
metric. Deep Gradient Compression (DGC) [5], for example,
applied top-k gradient selection to obtain sparse gradients
and achieved up to 99.9% gradient sparsification without loss
in accuracy. Alternatively, gradient quantization approaches
perform quantization of the gradients prior to transmission.
The authors of [7], for instance, trained the ResNet-152 [3]
network, with the 8-bit quantized gradients, to full accuracy on
ImageNet [9] 1.8× faster than the version with full-precision
gradients.

Despite their effectiveness, these methods explore only the
intra-node gradient redundancy. In this work, we propose to
leverage the correlation between the gradients of the different
nodes to achieve further compression gains. An attempt to
explore the redundancies of gradients of different nodes was
also made in [8], [10]. The method described in [8] is based
on distributed source coding, realized by low-density parity-
check (LDPC) codes, which leads to an impractically high
decoding latency and complexity. In contrast, our method
employs a lightweight autoencoder to compress the gradients,
which considerably reduces the communication rate without
compromising the encoding and decoding speed. In [10], the
authors also utilized the correlation between the gradient
tensors. They showed that the cosine distance between the
gradient residuals at the different nodes decreases fast over
the iterations. Based on this similarity, the authors of [10]
proposed ScaleCom, an approach using a new Cyclic Local Top-
k (CLT-k) compressor for the ring-allreduce protocol. Within
their compression scheme, one of the workers performs top-k
selection and all other workers take the values at the indices
selected by the leading worker. Compared with this approach,
our Learned Gradient Compression (LGC) framework can
provide higher compression ratios because of the introduction
of an autoencoder-based distributed compression approach.

In summary, the contributions of this work are:
• We propose a novel autoencoder-based framework for per-

forming distributed gradient compression by leveraging the
correlation between them. To the best of our knowledge,
this is the first attempt to use autoencoders to capture the
correlation across gradients, in order to compress them.

• We study experimentally the statistical dependency among
gradients of different nodes using information-theoretic
metrics and show that there is a significant rate reduction
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that can be achieved if these correlations are exploited.
• We experimentally evaluate our method against different

benchmarks—including uncompressed gradients (baseline
method), and the state-of-the-art DGC [5] and Scale-
Com [10] methods—and show that our framework can
achieve significant rate reductions for different tasks,
models and datasets.

The remainder of this paper is structured as follows. Sec-
tion II describes our autoencoder to leverage the correlation
between gradients and Section III presents how the autoencoder
can be used within the proposed LGC framework for distributed
training. Section IV elaborates on the experimental validation
of the approach and Section V draws the conclusion.

II. AUTOENCODER-BASED GRADIENT COMPRESSION

We consider data-parallel distributed training under the
parameter server communication protocol, which is one of
the most well-established protocols for distributed communi-
cation [11]. In this scenario, the nodes are divided into two
types: the worker nodes, which contain a replica of the neural
network and calculate the gradient tensor of it using the data
they have access to, and the master node, which receives the
gradient tensors from the worker nodes, performs a reduction
operation and sends back the updated gradient tensor to the
worker nodes.

A. Common and Innovation Component Model

Under the parameter server distributed training, consider
a set of gradient tensors, each unfolded in the form of a
vector gk, k = 1, . . . ,K. These gradient vectors correspond
to the same training iteration across the K worker nodes,
where the index of the iteration is omitted for simplicity.
Our empirical results, reported in Section IV, suggest that
these gradient vectors are highly correlated, alias, their mutual
information (MI) is high. In other words, in distributed training,
there is a significant amount of redundant information, which if
eliminated can further reduce the communication rates without
affecting the performance of the trained model. We model the
correlation between the gradient vectors using the following
common and innovation components model. Specifically, each
gradient vector can be expressed as:

gk = gcp + gIk, k = 1, 2, . . . ,K, (1)

where gcp is the common component that models the in-
formation shared by the K gradient vectors and gIk is the
innovation component that expresses the information unique
to each gradient vector. We realise the innovation component
as a lightweight signature of the gradient vector; specifically,
we set the innovation component of a gradient vector as a
vector comprising its top-magnitude values and zeros elsewhere
(the sparsity of the resulting vector is 0.001%). Furthermore,
we propose an autoencoder (see Section II-B) that learns
the common component across the gradient vectors and
reconstructs the gradient vectors by combining the learned
common component and the innovation component.

Fig. 1. The architecture of the proposed autoencoder. The gradients are fed
sequentially to the encoder and, at each decoder, the innovation gradients are
concatenated with the intermediate output before the last convolutional layer.

B. Autoencoder Architecture

The proposed autoencoder for the compression and recon-
struction of the gradients consists of one encoder, Ec, and K
decoders, Dk

c , k = 1, . . . ,K (see Fig. 1). The encoder encodes
one of the gradients gi, with i ∈ (1, . . . ,K), into a compressed
common representation:

gc = Ec(gi). (2)

Each of the K decoders inputs the compressed common
representation, gc, and combines it with the innovation in-
formation of the k-th gradient, gIk, to obtain the corresponding
reconstructed gradient vector,

greck = Dk
c (g

c, gIk). (3)

During the training process of the autoencoder, in order to
obtain the compressed common representation gc from the
gradient vectors, all gradients are fed to the encoder Ec. The
following similarity loss, i.e., the Euclidean distance between
the compressed representations of the gradients, is minimized:

Lsim =

K∑
k=0

K∑
m=0, m 6=k

||(Ec(gk)− Ec(gm))||22. (4)

In order to reconstruct the original gradients from the com-
pressed ones, the following reconstruction loss is also applied
to the output of the decoders Dk

c :

Lrec =

K∑
k=0

||(gk − greck )||22. (5)

The final loss function therefore consists of two terms, the
reconstruction loss and the similarity loss, that is,

L = λ1Lrec + λ2Lsim. (6)

The proposed autoencoder network consists of convolutional
and deconvolutional layers. The kernels of the convolutional
and deconvolutional layers are one-dimensional (1D) since the
inputs of the networks are vectors. This approach reduces the
number of network parameters compared with the conventional
2D kernels by approximately 60%. The encoder, Ec, which
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Fig. 2. Training of the proposed autoencoder. g̃ is the gradient vector that is
constructed using the top-magnitude gradient values. Note that in the training
phase of the autoencoder, the innovation gradient vector g̃I is extracted on
the master node from the g̃ gradient vector.

TABLE I
PERFORMANCE COMPARISON OF THE LGC FRAMEWORK WITH THE OTHER
METHODS OF DISTRIBUTED TRAINING. IN THE CASE OF LGC, THE FIRST

NUMBER INDICATES THE VALUE FOR THE NODE THAT SENDS BOTH
COMPRESSED COMMON REPRESENTATION AND INNOVATION, AND THE

SECOND IS FOR THE REST OF THE NODES.

Training
Method

Pixel
Accuracy

Gradient
Size

Compression
Ratio

Baseline 46.3% 120MB 1×
DGC 46.5% 0.29MB 413×

Sparse GD 41% 0.29MB 413×
LGC 46.3% 0.17/0.16MB 693/722×

takes as input the vector gk, comprises 5 convolutional layers
with 1D kernels and a non-linearity in the form of the leaky-relu.
The decoder, Dc, takes as input the compressed representation
produced by the encoder and performs an upsampling operation
using 5 deconvolutional layers. Before the final convolutional
layer, the intermediate representation is concatenated with the
innovation component, gIk, which consists of the top-magnitude
values of gk and zeros elsewhere.

The training of the autoencoder (see Fig. 2) is performed
at the master node as follows. The master node receives
the gradient vectors from the worker nodes and passes them
sequentially to the encoder Ec. The encoded representations are
used to calculate the similarity loss Lsim. Furthermore, one of
the encoded representations (chosen randomly at each iteration)
is combined with the innovation components, gIk, k = 1, . . . ,K,
at the corresponding decoders Dk

c to reconstruct the gradients
and compute the Lrec loss.

III. THE PROPOSED LGC FRAMEWORK

Assume a system with multiple graphics processing
units (GPUs) consisting of K processing nodes. The goal is to
train a model with L layers in a data-parallel distributed manner
using synchronous stochastic gradient descent (SGD) under
the parameter server scenario. Without loss of generality, we
assume that the model is a fully convolutional neural network.
At each training iteration, a gradient tensor ∇k,l is produced
for each layer l = 1, . . . , L of the neural network and for each
node k = 1, . . . ,K. Each such gradient tensor is unfolded in
the form of a vector gk,l ∈ Rnl , where nl = khl · kwl · fl−1 · fl,
with khl , k

w
l denoting respectively the kernel height and the

kernel width at the layer l, fl−1 the number of filters in the
previous layer and fl the number of filters in the current layer.

In order to reduce the amount of gradient information sent
from each node, a certain amount of values are selected

from each vector, gk,l. Specifically, the framework extracts
the α% of the values in gk,l with the highest magnitude and
constructs the vector g̃k,l ∈ Rµl , where µl = α

100 · nl. The
top-magnitude gradient selection process is repeated for all
layers and concatenates the g̃k,l, l = 1, . . . , L, vectors together
to form the vector g̃k ∈ Rµ, with µ =

∑L
l=0 µl. This process

is performed independently at each node k = 1, . . . ,K with
α fixed across the nodes (typically α = 0.1). The transferred
indices are entropy encoded—using the DEFLATE compression
method [12]—and their rate is taken into account in the total
rate calculation. The remaining non-selected gradients are being
accumulated at the worker nodes using a momentum correlation
similar to the method described in [5].

The encoder Ec at one given worker node k compresses
its top-magnitude gradient vector g̃k to the representation g̃ck,
which is in turn transmitted to the master node. In parallel,
all worker nodes—including the node mentioned before—
apply coarse gradient selection on gradient vectors g̃k with
an aggressive sparsification rate of 0.001% (we keep 0.001%
of the gradients in the tensor), resulting in transmitting the
vector g̃Ik ∈ R0.00001∗µ, k = 1, . . . ,K (see Algorithm 1 for
more details). One can think of g̃Ik as the innovation part
of g̃k, which is specific to each worker node, and g̃ck as the
compressed common information shared across all nodes, as
per the approach described in Section II.

At the master node, g̃c and g̃Ik are used to reconstruct the
gradient g̃reck with the help of the decoder Dk

c of the proposed
autoencoder (see Fig. 3), that is,

g̃reck = Dc(g̃
c, g̃Ik). (7)

The master node then obtains the aggregated gradient by
averaging the reconstructed gradients:

g̃rec =
1

K

K∑
k=1

g̃reck . (8)

During the first iterations, the weights of a model (that is
trained in a distributed fashion) change very aggressively and
thus, the calculated gradients are being rapidly outdated. Any
substitution or transformation of the gradients at this stage
can be harmful to the performance of the model [5]. For this
reason, we do not apply gradient sparsification and compression
at the first iterations of the training and instead we use the
original gradients. After a number of initial iterations, we
update the weights of the model using the gradient vector g̃k,
constructed using the highest magnitude values. In parallel, the
autoencoder network is trained at the master node as described
in Section II-B. The training of the compression network lasts
for a number of iterations and then it can be used to compress
the gradients. When the autoencoder is trained, the weights of
the learned encoder are transferred to one of the worker nodes.
Then, we enter the third stage of training, where the weights
are updated with the reconstructed aggregated gradients.

IV. EXPERIMENTS

In this section, we present the evaluation of our LGC
framework in the task of compressing the gradients from the
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Fig. 3. Distributed training: g̃c is the compressed-common gradient vector,
g̃I is the innovation gradient vector, and g̃rec is the reconstructed gradient.

Algorithm 1 Compression and reconstruction of the gradient
with the LGC on the node k
Input :K nodes, minibatch size b, encoder Ec, decoder Dk

c ,
Loss function, Loss, optimizer SGD, # layers L

gacc ←− 0 for it = 0, 1, . . . do
for l = 0, . . . ,L do

gl ←− ∇Loss+ gacc
threshold←− min(top 0.1% of abs(gl))
mask ←− abs(gl) ≥ threshold
g̃l ←− mask � gl
gacc ←− gacc + (¬mask)� gl
thresholdinv ←− min(top 10% of abs(g̃l))
maskinv ←− abs(g̃l) ≥ thresholdinv
g̃Il ←− g̃l �maskinv

end
g̃k ←− concatenate(g̃l)
g̃Ik ←− concatenate(g̃Il )
g̃c ←− Ec(g̃k)
g̃rec ←− Dk

c (g̃
c, g̃Ik)

end

worker to the master node (uplink communication). Similar
to prior work [5], [6], downlink communication is outside of
the scope of this work, but it can be inexpensive when the
broadcast routine is implemented with the “tree” topology as in
several Message Passing Interface (MPI) implementations [13].
All experiments are performed on a single machine with
four GeForce RTX 2080 Ti GPUs and 128 GB of RAM,
by emulating more than one node on each GPU. The LGC
framework is built on top of Pytorch’s distributed package.

A. Gradient Correlation Analysis

We first analyze the statistical dependencies among the
gradient tensors produced by different computing nodes
within distributed training using information-theoretic mea-
sures; namely, the marginal and conditional entropy, and the
mutual information (MI). We conduct experiments using the
VGG11 [14] model with the Food101 [15] dataset and the
PSPNet [16] model with the CamVid [17] dataset. The trainings
are performed on 16 and 2 distributed nodes, respectively. The
calculation of the aforementioned measures is based on the
histograms of the discretized gradients, which are quantized
using the uniform quantizer with 232-level (32-bit) accuracy.
Figure 4 depicts the marginal entropy and the MI for different
pairs of layers in the models throughout the training iterations.
We observe that the MI values are high; approximately 80%
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Fig. 4. The mutual information (solid lines) and the marginal entropy (dotted
lines) between gradient tensors of the same layer on the different nodes,
through the training iterations, for distributed training of the VGG11 and the
PSPNet models.

of the average information content (i.e., the entropy) contained
in the layer’s gradient tensor at every iteration is common for
both nodes. These results corroborate our hypothesis that there
is a significant amount of information that can be obtained
from one gradient tensor about the other per iteration.

B. Distributed Training Results

We now evaluate the performance of the LGC framework
in reducing the rate of gradient communication in distributed
training. We consider the training of two models: the Resnet50
convolutional neural network trained on the ImageNet [9]
dataset (image classification task) and the PSPNet [16] model
trained on the CamVid [17] semantic segmentation dataset
(image-to-image transformation task).

The distributed training strategy within LGC is as follows:
the model is initially trained without gradient modification for
200 iterations. Then, the weights are updated using the top-
magnitude values of the gradients, and at the same time, the
autoencoder is being trained. This process lasts for another 200
iterations. The autoencoder is trained with the SGD optimizer
using a learning rate of 0.001 and a batch size of 1. For the
remaining iterations the distributed training is performed with
the compressed top-magnitude values of the gradients using
the trained autoencoder. For the selection of the top-magnitude
gradient values, we set the sparsity parameter to α = 0.1%.

Regarding the hyperparameters used in the trainings, we
follow the exact same setup as in the original papers (see [3]
for the ResNet model and [16] for the PSPNet model). For the
experiments with DGC and Sparse GD, we follow the strategies
that were described at the corresponding papers of DGC and
Sparse GD. In all experiments, we report the compression

ratio (CR) defined as, CR =
size
(
Goriginal

k

)
size
(
Gcompressed

k

) , where Goriginal
k and

Gcompressed
k are the uncompressed and compressed gradients at

the training node k, and the size(·) function computes the size
of the gradient tensor in Megabytes.
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TABLE II
PERFORMANCE IN DISTRIBUTED TRAINING OF RESNET50 ON IMAGENET.
IN THE CASE OF LGC, THE FIRST NUMBER IN THE COMPRESSION RATIO

INDICATES THE RATE FOR THE NODE THAT SENDS BOTH THE COMPRESSED
COMMON AND THE INNOVATION COMPONENT, AND THE SECOND NUMBER

IS FOR THE REST OF THE NODES.

Training
Method

Top1
Accuracy

Compression
Ratio

Total
Information

Baseline 75.98% 1× 351TB
LGC 75.88% 386/2800× 0.4TB

ScaleCom 75.98% 96× 3.6TB
DGC 76.01% 277× 1.2TB

Sparse GD 75.54% 277× 1.2TB

We conduct distributed training of ResNet50 on ImageNet [9]
on 8 nodes and assess the achieved accuracy and speedup
versus the gradient compression ratio. We used the following
settings: the SGD optimizer with a momentum of 0.9, a weight
decay of 1e− 4, and an initial learning rate of 0.1 that decays
by 10 every 30 epochs. The reported results are single-crop
performance on the ImageNet validation set. Table II depicts
the Top1 accuracy versus compression ratio as well as the
total amount of the gradient information (in TBs) sent from
all nodes during the whole training for the LGC framework
and alternative state-of-the-art methods, namely, DGC [5]
(our implementation), ScaleCom [10] and Sparse GD [4] (our
implementation). The results show that the proposed framework
is able to achieve substantial compression ratios—namely,
386× compression of the gradients for the node transmitting the
common component and its innovation component and 2800×
for the nodes transmitting only their innovation component—
without loss of accuracy compared with the baseline method,
which performs distributed training with the uncompressed,
non-modified gradients. In Table II, the reported total amount
of gradient information transferred during the entire training
in the case of the LGC, includes updates with the original
and the top-k gradients during the first two training phases,
as described in Section III. The total amount of information
sent is lower by 794× compared with the baseline training.
Furthermore, we achieved 1.7× speedup over the baseline. The
duration of one iteration for each type of gradient update that
we are using within a distributed training is the following: (i) 1
sec for the updates with the uncompressed gradients; (ii) 1.6
sec for the updates with the top-k gradients; and (iii) 0.6 sec
for the updates with the compressed gradients.

We also perform distributed training of the PSPNet model
on 2 nodes and assess the achieved pixel accuracy versus
the gradient compression ratio. The model is trained on the
CamVid [17] dataset, which consists of 32 different classes
and contain 701 images with a spatial resolution of 720× 960
pixels. In this experiment, we use a batch size of 12 and
momentum SGD. The results, which are reported in Table I,
show that our proposed LGC framework can reduce the size of
the gradient information sent from each node at each iteration
by 693× for the node transmitting the common component and
its innovation component and 722× for the nodes transmitting

only their innovation component, without a reduction in the
pixel accuracy. Furthermore, the proposed LGC framework
achieves a significantly improved compression ratio compared
to alternative state-of-the-art methods for distributed training
such as DGC [5] and Sparse GD [4].

V. CONCLUSION

In this paper, we have introduced a novel method for
data-parallel distributed training of deep neural networks.
We have shown empirically that our LGC framework can
provide up to 794× reduction in the total number of bits
being transferred within a distributed training of ResNet50 on
ImageNet, compared with the baseline distributed training with
original uncompressed gradients. This was made possible by
exploring the correlations between the gradients of different
nodes within the scope of distributed training and designing
distributed autoencoder for gradient compression.
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