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Abstract—This paper presents a novel approach to efficiently
compute the 4-, 8-, and 16-point variants of the Discrete Fourier
Transform (DFT). Our solution requires as many (non-trivial)
multiplications and additions of real numbers as fast algorithms
of the FFT family. However, we saved operations in a completely
different way. Instead of factorizing the complex matrix that
describes the transform, we consider separately the real and
imaginary parts of the DFT matrix. Both parts are rank-
deficient matrices, which contain pairs of linearly dependent rows
and columns, but are structured and symmetric. We factorize
each of them into a product of sparse matrices by applying
shear transforms to rows and columns, similarly as in two-side
diagonalization. The obtainable factorizations describe data flow
graphs in which non-trivial multiplications are well grouped,
as they occur in the midst of sequences of lifting steps related
to trivial multiplications by powers of 2, which can be imple-
mented by bit-shifting. Such schemes could be used to implement
the DFT in hardware, as they offer alternative possibilities
of modularization, pipelining, and folding of digital circuits.

Index Terms—FFT, DFT, discrete, Fourier, transform, algo-
rithm, lifting, shear, matrix

I. INTRODUCTION

The Discrete Fourier Transform (DFT) facilitates harmonic
analysis and frequency-domain processing of signals. As these
have found numerous applications, this transform is one
of mathematical and computational tools that form the foun-
dations of the contemporary science and engineering [1].

The DFT is popular also because fast algorithms have been
developed for computing it. Efficient methods for comput-
ing this transform usually are based on the FFT approach
by Cooley and Tukey [2]. The idea is to represent the DFT
as a composition of simpler, elementary transforms, so-called
butterflies.

It is less known that methods for efficiently computing
the DFT can be developed as well by considering sepa-
rately the real and imaginary parts of its matrix [3]. These
parts comprise real numbers, so they represent subtransforms
that produce real-valued coefficients from real-valued signals.
An efficient algorithm can be obtained by factorizing each of
the parts into matrices that represent sine-cosine transforms for
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which fast implementations are known. Similar solutions have
been derived without matrix notations, by considering real and
imaginary parts of twiddle factors of butterflies [4][5][6].

The latter approach allows for computing the DFT by
using as many or even fewer operations compared to FFT
algorithms. Moreover, one can easily prune data flow graphs
so as to adapt them for efficiently processing real-valued
signals. FFT-based computational schemes contain complex
multiplications in various places, so pruning possibilities are
limited.

In this paper, we propose a solution based on considering
real and imaginary parts of the DFT matrix. Contrary to the
known approaches of this kind, our method is not based on
connecting the parts with particular transforms. We use shear
transforms to iteratively reduce a part of the DFT matrix, so
as to obtain a sparse matrix which represents multiplications
that cannot be implemented by bit shifting. This matrix
describes the central part of a data flow graph for efficiently
computing a given variant of the DFT. This central part
is preceded and followed by complementary series of lifting
steps [7]. So, our method allows for obtaining algorithms that
can be implemented in hardware, as digital circuits which
can be modularized, pipelined, and folded in ways different
from those of the known solutions.

Lifting schemes have been already used for computing
the DFT, but in ways completely different from our one.
In [8], lifting schemes have been used to replace complex
multiplications and butterflies in data flow graphs of FFT
algorithms. In [9] and [10], the DFT has been decomposed into
the Hartley transform and some residual transform, for which
lifting-based implementations have been developed.

The present work is a continuation of our research de-
scribed in [11], where we considered the Walsh-Hadamard
Transform (WHT). Therein, it has been shown that WHT
matrices can be effectively factorized by applying shears
to rows and than to columns of a symmetric matrix. This
results in innovative, lifting-based data flow graphs that can be
used to develop improved programs and circuits for computing
the WHT.
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Fig. 1. Data-flow graph of the DFT decomposed into transforms related to
real and imaginary parts of its matrix.

II. REAL AND IMAGINARY PARTS OF THE DFT MATRIX

The N-point DFT of a signal is usually described using the
formula for the kth coefficient of the transform:

N—-1
X(k)y =Y e Fam), k=0..N-1 ()
n=0

where z(n) denotes n-th sample of the signal, and a series
of N samples is convolved by the k-th of the transform basis
functions, which are discrete complex exponents.
Alternatively, the transform can be described in a matrix
notation [12], as
X = WWx )

where x denotes a vector of N signal samples, X is the
corresponding vector of N DFT coefficients, while W) s
the N x N transform matrix. Elements of this matrix are roots
of the unity:

(W y1m1 = e 727% 3)
which are complex numbers that correspond to equidistant
points on the unit circle.

Fast algorithms for computing the DFT are usually derived
by rewriting (1), without using matrix-vector notations. Never-
theless, such algorithms can be as well described by factoriza-
tions of the DFT matrix, so that it is represented as a product
of sparse matrices.

Our research is based on the matrix notation. We consider
separately the real and imaginary parts of the DFT matrix,
decomposing (2) as follows:

{Re(X)] B {Re(W(N))

_ —Im(W(N))} {Re(x)
Im(X) Im(WHV))

Re(WV) Im(x)} “@

which describes the data-flow graph in Fig. 1.

Let us define c3 = 0.3827, ¢; = 0.7071, and cg = 0.9239,
in order to be able to write more compact equations. By using
these constants, we can show how the real and imaginary parts
look for the 4-point DFT:

11 1 1
1 0 -1 0
Re(WH)= |1 5 ¢ )
1 0 -1 0
0 0 0 0
@y,_ |0 -1 0 1
MW= =10 0 0 o ©
0 1 0 -1

for the 8-point DFT:
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1 ¢z 0 —c¢c7 =1 —cr 0 7
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8 1 —¢c; 0 ¢ =1 ¢ 0 —c7
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1 0 -1 0 1 0 -1 0
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o 0 0 0 0 0 0 017
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mW) =15 "05" 6 9 00 0 o0 ®)
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and for the 16-point DFT:

Re(W10) =
M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17
1 c9 ¢ ¢33 0 —c3 —c7 —cg —1 —cg —c7 —c3 0 ¢33 c¢c7 c9
1 cr 0 —C7 —1 —C7 0 c7 1 Cc7 0 —C7 —1 —C7 0 cr
1 Cc3 —C7 —Cg 0 Co c7 —C3 —1 —C3 C7 C9 0 —Cg —C7 C3
1P 0 -1 0 1.0 -1 0 1 0 -1 0 1 0 -1 0
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1 —c; 0 c¢7 —1 c7 0 —cy 1 —c7 O cr —1 c¢7 0 —c7
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1 cr 0 —C7 -1 —C7 0 cr 1 cr 0 —C7 —1 —C7 0 cr
L1l co ¢ ¢c3 0 —c3g —cy —cg —1 —cg —c7 —c3 0 ¢c3 ¢y co |
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and

Im(W19)) =
[0 0 0 0O 0 O 0 0 0 O 0 0O 0 O 0 0 7
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(10)

The matrices Re(W (™)) and Im(W ™)) do not describe
invertible transforms. They are singular matrices, having the
ranks of % +1 and % —1, respectively. Both parts of the DFT
matrix are symmetric along the main diagonal.

III. A LIFTING-BASED METHOD FOR FACTORIZING PARTS
OF DFT MATRIX

Let us use LY)(m,n,a) to denote the N x N matrix
of a shear transform. Such a matrix has ones on its main
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diagonal, while « is the only non-zero element outside the di-
agonal, at the position where the mth row and the nth column
intersect. For example,

L%(2,3,0) = (11)

SO O =
oo —=O
OoO=Q O
— o OO

Shear matrices describe data flow graphs that are called
lifting steps and schemes [7]. The name is related to their
application in constructing wavelets. They are also interesting
for persons which have to implement filters and transforms
in hardware, as lifting schemes are well suited to be imple-
mented as digital circuits based on fixed-point arithmetic [8].

We propose to use shear matrices to factorize both
Re(W)) and Im(W ). Shears can be applied to rows
of a part of the DFT matrix, and then to columns of the
resulting matrix, again to rows, and so on. In this way, one
can obtain a sparse matrix which cannot be reduced more. For
example, Re(W®)) can be reduced as follows

1 0 0O 1 1 1 1 1 1 1 1
0 1 00 1 0 -1 0} _ |1 0 -1 0 (12)
0 0 10 1 -1 1 =1 ({1 -1 1 -1
0 -1 01 1 0 -1 0 0 O 0 0
N——— —_————
L(%)(4,2,-1) Last row zeroed
1 1 1 1 1 00 O 1 1 1 0
1 0 -1 0 010 -1 (1 0 =10 13)
1 -1 1 -1/joo1 o= |t -1 1 of ¢
0 0 0 0 000 1 0 0 0 O
L(4)(2,4,—1) Last column zeroed
and so on.

One applies a shear to rows/columns of a matrix
by left/right-multiplying the matrix by the shear one. Depend-
ing on m, n, «, a shear can zero more or fewer elements
of a matrix. We propose to choose the parameters in a greedy
fashion, so as to zero as many elements as possible. If various
shears can zero as many elements, then we prefer the shear
which zeroes elements farthest from the upper-left corner
of the matrix.

The symmetries of Re(W®)) and Im(W®)) can be
exploited to simplify determination of shears. If the left-
multiplication by L(m,n, a) zeroes some elements in the n-
th row of a symmetric matrix, then the right-multiplication
by L(n,m) zeroes the corresponding elements in the n-th
column. Such a reduction algorithm is a kind of Gaussian
elimination, greedy and constrained. It has been described
in more details in [11].

We can determine two categories of lifting steps. Steps
of one category reveal the rank of a part of a DFT matrix,
by zeroing redundant rows and columns. The remaining full-
rank submatrix is made sparse by shears of the second cate-
gory, but they do not modify its rank. It is trivial to determine
lifting steps of the first category.
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Fig. 2. Data-flow graphs of parts of 4-point DFT.

IV. A LIFTING-BASED FACTORIZATIONS OF PARTS OF DFT
MATRIX

A. 4-point DFT
For the 4-point DFT, Re(W ) can be reduced to

1 0 0 0
C(Re(WW)) = 8 1)2 _02 8 (14)
0 0 0 0
and represented as
Re(W®W) =L(4,2,1)
L(3,1,1)-L(1,3,—-1)
- C(Re(W™)) (15)
L(3,1,—3)-L(1,3,1)
‘L(2,4,1)

which describes the data flow graph in Fig. 2a.
On the other hand,

Im(WW) = L(4,2, 1) - C(Im(W™)) - L(2,4,-1)  (16)
where
0 0 0 O
@y _ (0 =1 0 0
CIm(W™) =10 0o 0 o a7
0O 0 0 O
The corresponding scheme is shown Fig. 2b.
In this and remaining sections, we write L(...) instead

of LW)(...). This makes equations clearer, while N can
be easily deduced from the context.
B. 8-point DFT

For the 8-point DFT,

Re(W®) =L(8,2,1) - L(7,3,1) - L(6,4,1)

-L(5,1,1) L(1,5,—%)
‘L(4,2,-1) - L(2,4, 5)
-C(Re (W(S)))
'L(4,2,1)-L(2,4,-1)
-L(571,——) L(1,5,1)
‘L(4,6,1) - L(3,7,1) - L(2,8,1)

18)

where

[N eNoleNol SNl

o~
—_
[e=lenNevllen)

C(Re(W®)) = (19)
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Fig. 3. Data-flow graphs of parts of 8-point DFT.
These equations describe the scheme in Fig. 3a.
The imaginary part can be reduced to
m o0 0 0 0 0 0 0]
0 —cz 00 O O O O
0O 0 0 2 0 0 0 O
®w_ |0 0 2 0 0 0 0 0
CImW=D =19 0 0000 0 of @
0O o0 o0 0 0 0 0 O
0o 0 o0 0 0 0 0 O
1o 0 0 0 0 0 0 Ol
and represented as
Im(W®) =L(8,2, -1) - L(7,3, -1) - L(6,4, ~1)
-L(4,2, 1) L(2,4,—3)
. C’(Im(W(S))) 21
‘L(4,2,-1) - L(2,4,1)
“L(4,6,—1) - L(3,7,—1) - L(2,8,—1)
which describes the scheme in Fig. 3b.
C. 16-point DFT

For the 16-point DFT,

Re(W"9) = L(16,2,1) - L(15,3,1) - L(14,4,1)
-L(13,5,1) - L(12,6,1) - L(11,7,1) - L(10,8,1)
-L(9,1,1) - L(1,9,—3) - L(8,2,1) - L(2,8,— %)
'L(57111) 'L(1a57_%) ' L(4 2a_1) ' L(2747 %)
- C(Re(W19)Y) (22)
-L(4,2,%)-L(2,4,-1) - L(5,1,—%) - L(1,5,1)

L(8,2,—%)-L(2,8,1) - L(9,1,—3) - L(1,9,1)
“L(8,10,1) - L(7,11,1) - L(6,12,1)
L(5,13,1) - L(4,14,1) - L(3,15,1) - L(2, 16, 1)

where

C(Re(W19)) =
M1 0 0 0 0 0 0 0 0 O01x7]
0 0 0 0 0 0 —2¢7 O 0 Oix7
0 0 0 0 —2 0 0 0 0 Oi1x7
0 0 0 0 0 0 0 0 —4 01x7
0 0 -2 0 0 0 0 0 0 O1x7
0 0 0 0 0 —4co9 O 4c3 0 O1x7
0 —2¢7 O 0 0 0 0 0 0 O1x7
0 0 0 0 0 4cs 0 4cg 0 O1x7
0 0 0 —4 0 0 0 0 0 O1x7
107x1 O7x1 O7x1 O7x1 O7x1 O7x1 O7x1 O7x1 O7x1 O7xr7l
(23)

where 0,,,«, denotes the matrix of m by n zeros.
As to the imaginary part,
Im(W"9) = L(16,2, 1) - L(15,3, —1) - L(14,4, —1)
-L(13,5,-1) - L(12,6,—1) - L(11,7,—1) - L(10,8, —1)

(
-L(8,2,1)-L(2,8,—1)-L(7,3,1) - L(3,7,—1)
-L(6,4,1) - L(4,6,—3) - L(6,8,1) - L(8,6, —1)
- C(tm(W)

-L(6 8,—1)-L(8,6,1) - L(6,4,—1) - L(4,6,1)
' L( 7) L(37 7, 1) ) L(87 2, _%) ) L(2787 1)
-L(8 10 1)-L(7,11,-1) - L(6,12, —1) - L(5, 13, —1)
-L(4,14,-1) - L(3,15,—-1) - L(2,16,—1)
(24)
where
C(Im(W1)) =
r o 0 0 0 0 0 0 0 01xs]
0 —c3 0 —co O 0 0 0 Oixs
0 0 0 0 0 0 0 2c¢7 Oixs
0 —co O c3 0 0 0 0 Oixs (25)
0 0 0 0 0 -4 0 0 Oixs
0 0 0 0 -4 0 0 0 Oixs
0 0 0 0 0 0 —4 0 Oixs
0 0 2 O 0 0 0 0 Oixs
L0sx1 Osx1 Osx1 Osx1 Osx1 Osx1 Osx1 Osx1 Osxs]

The corresponding data flow graphs are shown in Fig. 4.
D. Remarks about the computational schemes

In order to obtain a complete solution for computing
the DFT, one needs to combine the scheme in Fig. 1 with
those in Figs. 2, 3, or 4.

In each of the latter schemes, we have denoted its part
related to the C'(...) matrix, or to multiplications and data
reordering. So, both these are performed in the midst of a data
flow graph. FFT algorithms require to reorder either inputs
or outputs, while non-trivial multiplications are spread over
a scheme, being separated by layers of butterflies.

The total numbers of multiplications and additions of real
numbers are essentially the same as in the corresponding FFT
algorithms. Sign changes described by the C(...) matrix can
be combined with lifting steps, so as to avoid superfluous
subtractions.

In Figs. 2 — 4, pairs of lifting steps occur that are equivalent
to butterflies with scaled outputs. The equivalence is explained
in Fig. 5. To the best of our knowledge, nobody reported
on similar butterfly-based schemes in the literature.
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Fig. 4. Data-flow graphs of parts of 16-point DFT.
12 [4] S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer
>~e - ¢ arithmetic operations,” IEEE Trans. Signal Process., vol. 55, no. 1, pp.
= 111-119, Jan. 2007.
y 3 [5] D. J. Bernstein, “The tangent FFT.” in Applied Algebra, Algebraic
>e Algorithms and Error-Correcting Codes, S. Boztag and H.-F. F. Lu, Eds.
Springer, 2007.
Fig. 5. Equivalence between lifting scheme and butterfly. [6] H. Guo, G. Sitton, and C. Burrus, “The quick Fourier transform: an FFT
based on symmetries,” IEEE Trans. Signal Process., vol. 46, no. 2, pp.
335-341, Feb. 1998.
[71 W. Sweldens, “The lifting scheme: A custom-design construction of

V. CONCLUSION

Even though the related research field has been thoroughly  [8]
explored by scientists and engineers, we were able to invent
a novel approach to computing the DFT. Our method results  [9]
in data flow graphs which are different from those of the
known algorithms. Their specific layouts can be exploited
to develop digital circuits modularized, pipelined, and folded [10]
so as to better utilize chip area or to improve performance.
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