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Abstract—We consider the clustering problem for the labeled
stochastic block model (LSBM) with non-uniform class priors. We
introduce a novel relaxation of the maximum a posteriory (MAP)
estimator for the cluster labels and develop an algorithm for the
numerical solution of this relaxation, assuming that the number
of clusters, the class priors, and the label distributions are known
in advance. Semi-supervised operation is enabled by allowing
each node to have a distinct prior. Numerical experiments confirm
that our method outperforms state-of-the-art approaches in terms
of clustering accuracy.

I. INTRODUCTION

Clustering of data is a widely studied topic with numerous
applications. Probably the best known approach is unsuper-
vised spectral clustering on unsigned graphs [1]. Examples
for semi-supervised clustering methods are [2]–[4]. Ideas for
clustering on signed graphs [5] originate in [6], [7] and have
recently been developed further both for unsupervised [8]–
[15] and semi-supervised scenarios [16]–[18]. The common
rationale of many clustering algorithms is to minimize some
variation of the graph cut, i.e., to maximize separation (few
positive edges between distinct communities) and homogene-
ity (few negative edges within communities).

The stochastic block model (SBM) is a practically useful
and analytically tractable random graph model that is com-
monly studied in the context of graph clustering (see [19]
for an overview of the current state of the art). For an SBM
with two symmetric clusters, it was shown that minimizing the
graph cut is equivalent to MAP estimation of the cluster labels
[19, Page 34]. For the case of multiple clusters with possibly
different sizes, [20] devised an algorithm that is asymptotically
equivalent to MAP label estimation. In our experiments we
select the model parameters based on the results on weak
recovery from [21] (weak recovery means that the cluster
overlap is bounded away from a random guess).

The LSBM generalizes the SBM by assigning a label to each
edge [22]–[24]. These labels can be discrete, continuous, or
even categorical. [22] provided a conjecture on the feasibility
of reconstructing the cluster associations in the LSBM, special
cases of which have been proven in [23], [25]. For the LSBM
with two clusters, [23] showed that MAP coincides with cut
minimization. Since the MAP estimator in general is NP-hard,
several relaxations have been proposed based on semi-definite
programming [23], [26]. The LSBM with multiple clusters has
been studied in [24].

In this paper we propose and solve a relaxation of the MAP
estimator for the LSBM with arbitrary number of clusters
and non-uniform class priors. We assume that the number of
clusters, the class priors, and the label distributions are known.

In our formulation, distinct nodes may have different priors,
which can be used e.g. to enable semi-supervised operation.

This work is organized as follows. Section II gives an
introduction to the LSBM and formulates the MAP label
estimator. In Section III we develop the proposed relaxation
and its numerical solution. An experimental comparison of
our approach to existing MAP based approaches and to some
state-of-the-art clustering algorithms is provided in Section IV.
Finally, in Section V we give a brief conclusion.

II. MAP ESTIMATION FOR THE LSBM

We adopt the notation from [22] for an LSBM with N
nodes, edge set E , and K clusters. The cluster labels σi ∈
{1, . . . ,K}, i ∈ {1, . . . , N}, of all nodes are independent
with prior distribution P{σi} (note that distinct nodes can have
different priors). For each pair of nodes (i, j) with σi = σj , an
(intra-cluster) edge is placed with probability p and assigned
a label lij via a distribution µ(·); if σi 6= σj , an (inter-cluster)
edge (i, j) occurs with probability q and receives a label lij
via the distribution ν(·).

Since all edges and labels are mutually independent and the
graph is symmetric without self loops, the distribution of the
edge set E and the label set L = {lij} for given cluster labels
σ can be written as

P{E ,L|σ} =
N−1∏
i=1

N∏
j=i+1

P{(i, j), lij |σi, σj} . (1)

with

P{(i, j), lij |σi, σj} =


p µ(lij), σi = σj , (i, j) ∈ E ,
1− p, σi = σj , (i, j) 6∈ E ,
q ν(lij), σi 6= σj , (i, j) ∈ E ,
1− q, σi 6= σj , (i, j) 6∈ E .

We now assume that we are given a graph with edge set E
and label set L and our goal is to estimate the cluster labels
σ. The MAP estimator of the labels is given by

σ̂ = argmax
σ∈{1,...,K}N

P{E ,L|σ}P{σ} , (2)

Taking logarithms and using (1) and the independence of the
cluster labels, the MAP-estimator becomes

σ̂MAP = argmax
σ∈{1,...,K}N

N∑
i=1

ln P{σi} (3)

+

N−1∑
i=1

N∑
j=i+1

ln P{(i, j), lij |σi, σj} .
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III. PROPOSED MAP RELAXATION

A. Derivation

The MAP estimator is an integer programming problem
and thus NP-complete. To obtain a tractable problem, we
are proposing a relaxation with a continuous but non-convex
objective function and a convex constraint set. To this end,
we define a binary-valued matrix X ∈ {0, 1}N×K of one-hot
encodings for the cluster associations, i.e.,

Xik =

{
1, σi = k,

0, else.
(4)

Furthermore, using the shorthand notation pij = p µ(lij) and
qij = q ν(lij) we define the edge-likelihood matrix Pij ∈
RK×K as

Pij =

{
qij11

T + (pij − qij)I, (i, j) ∈ E ,
(1− q)11T + (q − p)I, (i, j) /∈ E .

(5)

With xT
i denoting the ith row of X (i.e., the one-hot

encoding of the cluster label σi), it then follows that

xT
i Pijxj = P{(i, j), lij |σi, σj} . (6)

Similarly, we write the the class membership distribution as

P{σi} = pTi xi,

where the kth entry of pi equals the probability that node i
belongs to cluster k. Exploiting the symmetry of Pij , the MAP
estimator can be expressed in terms of the one-hot encodings
X as (cf. (3))

min
X∈{0,1}N×K

f(X) s.t. X1 = 1, (7)

with

f(X) = −
N∑
i=1

ln
(
pTi xi

)
− 1

2

∑
i 6=j

ln
(
xT
i Pijxj

)
. (8)

Note that the side-constraint in (7) ensures that X is indeed
a one-hot encoding matrix. Since (7) is still a combinatorial
optimization problem, we relax the condition Xik ∈ {0, 1} to
Xik ∈ [0, 1] (i.e., 0 ≤ Xik ≤ 1). With the convex set

X =
{
X ∈ [0, 1]N×K

∣∣X1 = 1
}
,

the proposed MAP relaxation then is given by

X̂ = arg min
X∈X

f(X). (9)

The corresponding estimated cluster labels read

σ̂i = argmax
k∈{1,...,K}

X̂ik. (10)

Algorithm 1 Projected Gradient Descent Estimator

Input: E , L, p, q, µ(·), ν(·), p, X(0), α0, β, γ
1: compute Pij for all (i, j) according to (5)
2: t = 0
3: repeat
4: t← t+ 1
5: J (t) ← ∇f(X(t−1))
6: D(t) ← πX

(
X(t−1) − J (t)

)
−X(t−1)

7: α← α0

8: repeat
9: α← βα

10: X(t) ←X(t−1) + αD(t)

11: until f(X(t−1))− f(X(t)) ≥ γα
〈
J (t),D(t)

〉
12: until ‖D(t)‖ ≤ ε
Output: σi = argmaxkX

(t)
ik , i = 1, . . . , N

B. Solution

In general, some of the matrices Pij are indefinite and hence
the objective function f(X) in (9) is not guaranteed to be
convex. However, f(X) is differentiable if the elements of
pi and Pij are all strictly positive. To solve the (possibly
non-convex) problem (9), we resort to a feasible direction
method, choosing the directions based on projections of the
gradient and the step-size according to the Armijo rule along
the feasible direction with unit step-size [27, Section 2.3].
The overall projected gradient descent method is listed in
Algorithm 1.

The elements of the gradient matrix J = ∇f(X) in line 5
of Algorithm 1 are given by the partial derivatives

∂

∂Xik
f(X) = −p

T
i ek
pTi xi

−
∑
j 6=i

xT
j Pijek

xT
j Pijxi

(11)

Furthermore, line 6 involves the projection πX (·) on the
constraint set X , which imposes that each row of X belongs
to the convex probability simplex. Hence, the projection onto
X can be computed with the algorithm from [28].

As we are dealing with a possibly non-convex problem, the
initialization X(0) can be quite critical. In our experiments we
use the labeling results obtained with clustering algorithms
that feature good performance but are not computationally
expensive.

C. Censored Block Model

The censored blockmodel (CBM) (see [29]) is an interesting
special case of the LSBM with p = q and lij ∈ {−1, 1}.
This implies that for (i, j) /∈ E all elements of Pij are
identical (cf. (5)) and hence absent edges in the graph are non-
informative regarding the cluster affiliation. Note, however,
that pij 6= qij for (i, j) ∈ E since µ(·) 6= ν(·).

These observations allow us to simplify the objective func-
tion in (8) since only terms with (i, j) ∈ E need to be retained.
More specifically, since Pij = c11T for (i, j) /∈ E , for
these node pairs we have (here we use the one-hot constraint
xT
i 1 = 1)

ln
(
xT
i Pijxj

)
= ln

(
cxT

i 11
Txj

)
= ln(c),
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which is independent of X and hence can be dropped in the
objective function, thus leading to

f(X) = −
N∑
i=1

ln
(
pTi xi

)
− 1

2

∑
(i,j)∈E

ln
(
xT
i Pijxj

)
, (12)

which involves only |E| +N terms instead of N2. A further
simplification is obtained for uniform cluster label distribution,
i.e., pi = 1/K (this amounts to the assumption of equally-
sized clusters); here, ln

(
pTi xi

)
= ln

(
1Txi/K

)
= − ln(K),

which is constant and can hence also be disregarded, leading
to the objective function

f(X) = −1

2

∑
(i,j)∈E

ln
(
xT
i Pijxj

)
. (13)

In addition to substantially reduced computational complexity,
this sparse simplification further enables an efficient dis-
tributed implementation of Algorithm 1 (e.g., the sum in the
gradient computation in (11) only involves neighboring nodes).

D. Non-differentiable Cases

In some cases (specifically if xT
i Pijxj = 0 for some i

and j ), the objective in (7) is not differentiable on the whole
feasible set X . This can occur only if there is a label l ∈ L for
which either µ(l) = 0 or ν(l) = 0. It can be shown that the
points X † ⊂ X where the objective is not differentiable lie
on the relative boundary of X . By choosing an initialization
X(0) in the relative interior of X and α0 < 1, we can still
apply Algorithm 1 and it is guaranteed that X(t) /∈ X † for
any iteration t. Furthermore, the closer X(t) gets to X †, the
stronger the gradient points away from X †.

IV. EXPERIMENTS

In this section we compare our MAP relaxation (MAPR)
algorithm with several state-of-the art methods. We adopt the
setting of [23], which means that we consider edge labels in
{−1, 1} and label distributions such that µ(1) = ν(−1) =
0.5 + ε with ε ∈ [0, 0.5]. Here, ε = 0.5 corresponds to
the perfectly balanced case (i.e., only positive edges within
clusters and only negative edges between distinct clusters).
Since perfectly balanced graphs can be trivially clustered by
dropping negative edges and identifying the resulting compo-
nents, we restrict to ε ≤ 0.45 in our simulations.

We compare our MAPR method to the following four
benchmark algorithms:
• the spectral method from [23] (denoted SMO), which

attempts to maximize the overlap for the case of two
clusters;

• the semi-definite programming (SDP) algorithm from
[30] that was designed to achieve asymptotically exact
recovery in the (standard) SBM;

• the spectral partitioning algorithm from [24] (denoted
SP), which recovers the clusters asymptotically accurately
in the general LSBM;

• the SPONGE algorithm [14], which provides bounds for
weak recovery in the LSBM with K = 2.
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,σ̂

)
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b = 4
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b = 1
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SMO

Figure 1. Average cluster overlap versus balancedness ε for MAPR and SMO.

The performance metric in all our experiments is the cluster
overlap Q(σ, σ̂) as defined in [22, eq. (9)] (Q(σ, σ̂) = 1
amounts to perfect cluster recovery).

In all of our experiments we choose the parameters in
Algorithm 1 as α0 = 0.2 and β = γ = 1/2. As initialization,
we use X(0) = πX (X̃) where

X̃ik =

{
0.55, σ

(0)
i = k,

0.45, else.
(14)

Here, σ(0) denotes the labels obtained by some other algorithm
(to be specified below for each experiment separately).

A. Two Clusters

For the comparison with SMO in the two class setting with
equally sized clusters, we use an LSBM with N = 1000 nodes
and the same configuration for a = Np and b = Nq as in [23],
i.e., (a, b) ∈ {(12, 8), (6, 4), (3, 1)}. The results σ(0) obtained
with SMO are used to initialize Algorithm 1. Fig. 1 compares
the cluster overlap (averaged over 100 independent realizations
of the LSBM) obtained with MAPR and with SMO.

We can see that Algorithm 1 outperforms SMO by a small
margin even though SMO was designed to maximize the
cluster overlap. This small margin comes from the different
types of relaxation. SMO uses a spectral (i.e., a quadratic)
relaxation which favors small steps in many different positions
of the label vector, which in turn can lead to errors in the final
label quantization step. Conversely, with MAPR we obtain a
matrix X̂ that—in the vast majority of cases—indeed belongs
to {0, 1}N×K , so that the final quantization step (10) becomes
obsolete.

B. Multiple Clusters: Unsigned SDP

Next we compare MAPR to SDP in order to see the impact
of adding labels to an SBM. We generated an LSBM with
labels in {−1, 1}, interpreted it as a signed graph and only
considered the unsigned part to obtain an SBM. The resulting
intra- and inter-cluster edge probabilities are given by p̃ =
µ(1)p and q̃ = ν(1)q, respectively. The probabilities p and q
are chosen as p = q = K(K+2)

N ; this implies that absent edges
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Figure 2. Average cluster overlap versus balancedness ε for MAPR and SDP.

are non-informative and that the left-hand side in the weak
recovery threshold [19, Theorem 37]

N(p̃− q̃)2

K(p̃+ (K − 1)q̃)
> 1. (15)

equals 1 for ε = 0.25.
The implementation of SDP using standard solvers for semi-

definite programming requires to store a full matrix of size
N(N + 1)/2 × N(N + 1)/2, which drastically limits the
number of nodes in the LSBM. In this experiment we thus
only consider graphs wih N = 120 nodes and equally sized
clusters. We furthermore used SPONGE in the background to
initialize Algorithm 1.

The clustering performance achieved with MAPR and SDP
for K = 2, 5, 8 is depicted in Fig. 2 (the cluster overlap was
averaged over 100 independent realizations of the LSBM).
Interestingly, the performance in all cases indeed is seen
to improve dramatically around the weak recovery threshold
ε = 0.25. Furthermore, MAPR clearly outperforms SDP for
all K and ε since it better exploits the information underlying
the LSBM. We also see that for increasing K the cluster
labels obtained with MAPR become more accurate even at
the threshold for weak recovery, even though the threshold
requires strict inequality. However, the theoretical threshold
holds only asymptotically for N → ∞ and thus deviations
for finite N are possible. Furthermore, with a fixed number of
nodes the values for p and q increase quadratically with K,
which directly influences the overall sparsity of the graph.

C. Multiple clusters: SP and SPONGE

In our last experiment, we compare MAPR to SP and
SPONGE in the case of multiple clusters. We consider an
LSBM with N = 1000 nodes and K = 2, 5, 10 equally
sized clusters. Depending on the number of clusters, the edge
probabilities were set again to p = q = K(K+2)

N .
For SPONGE we resort to the original Python imple-

mentation of [14] provided on GitHub (https://github.com/
alan-turing-institute/SigNet). The SP method from [24] con-
sists of two steps (we used the algorithm listed in the preprint
version of [24] on arXiv). In the first step, SP finds estimates

for the parameters of the LSBM and calculates a spectral
decomposition of the graph. This results in a first estimate
of the cluster labels, which are used as initial value for the
second step. For the case that all graph parameters are known,
[24] suggests to use an SVD in combination with the K-means
clustering algorithm in the first step. We refer to this version
as SP/SVD. Alternatively, we use the results from SPONGE as
initial value for the second step (referred to as SP/SPONGE).

Fig. 3 compares the cluster overlap (averaged over 100
realizations) for all three algorithms. It can be seen that MAPR
and SP both improve on SPONGE. This can again be attributed
to the quantization problem discussed in Section IV.A. On top
of that, MAPR and SP exploit the full parameter set underlying
the LSBM whereas SPONGE only implicitly uses the infor-
mation of equal cluster sizes. Furthermore, SP/SVD performs
uniformly worst by a large margin, thereby emphasizing the
importance of an appropriate initialization.

Interestingly, the (second) step of SP can be seen as a
discrete version of MAPR. In every iteration, each node
changes its cluster label to the most likely cluster association
given the current state of all nodes. In [24] it was proved that
asymptotically this converges to a solution where only a fixed
number of nodes is assigned incorrect cluster labels. However,
for the finite case the method often oscillates between two
fixed points. This behaviour is reflected in the results in Fig. 3,
since MAPR outperforms SP even with the same initialization.

In the case of two clusters, we can adapt the condition for
asymptotically exact recovery from [24] and get

8

log(N)

(√
1

2
+ ε−

√
1

2
− ε

)2

> 1,

which amounts to a threshold of ε = 0.4953.

V. CONCLUSION

We presented a new way to formulate the MAP estimator
for the cluster structure of the LSBM using one-hot encoding.
Based on this formulation we proposed a relaxation that we
solve using a projected gradient approach. Our optimization
algorithm tends to avoid the (often error-prone) label quantiza-
tion problem afflicting several exting approaches (specifically
spectral methods). Based on these advantages, our simulations
revealed consistent performance gains for our MAP relaxation
compared to spectral methods and to discrete optimization
methods in the LSBM. Our experiments further confirmed
that the additional information in the LSBM improves the
clustering accuracy relative to the (unlabeled) SBM.
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Figure 3. Average cluster overlap versus balancedness ε for MAPR, SP (with
two initializations), and SPONGE (top: K = 2, middle: K = 5, bottom:
K = 10).
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