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Abstract—Bone-conducted (BC) speech potentially avoids the
undesired effects on recorded speech due to background noise
or reverberation; however, BC speech has lower quality and
intelligibility than air-conducted (AC) speech. Since a large-scale
BC speech database is hard to obtain (low-resource), current
BC speech enhancement methods hardly improve the speech of
speakers outside the training dataset. We proposed a method
for enhancing BC speech from speakers outside of the training
dataset in such a low-resource scenario. The proposed method
contained a feature conversion model based on a vector-quantized
variational autoencoder incorporating the gammachirp filterbank
cepstral coefficients. The proposed method exploited the large-
scale clean AC speech database to improve the quality of the
BC speech. We conducted three evaluations to determine the
effectiveness of the proposed method: perceptual evaluation of
speech quality, short-time objective intelligibility, and the syllable
error rate of the automatic speech recognition system. The results
indicated that the proposed method could improve the sound
quality and intelligibility of the BC speech from speakers outside
of the training dataset.

Index Terms—bone-conducted speech, speech enhancement,
gammachirp filterbank cepstral coefficients, vector-quantized
variational autoencoder

I. INTRODUCTION

In our daily environments, speech signals are distorted
due to background noise and reverberation. The performance
of useful applications such as telephone communication and
automatic speech recognition (ASR) systems, therefore, is
reduced. A bone-conducted (BC) microphone can alleviate the
adverse effect of the surrounding environment on the speech
by recording the speech signal transmitted via the skull of the
speaker [1]. The recorded speech signal is named BC speech
to distinguish it from conventional air-conducted (AC) speech
transmitted via air vibration. However, the sound quality and
intelligibility of the BC speech are degraded due to the BC
characteristics. This degradation varies between the speakers
and pronounced utterances [2]. Hence, the quality and the
intelligibility of BC speech need to be improved.

Several studies investigated the characteristics of BC speech.
The bone conduction is similar to a low-pass filter with a cut-
off frequency of about 1 kHz [3], suggesting that the speech
fundamental frequency is preserved [4]. Many studies have

proposed BC speech enhancement methods, such as long-
term spectra-based [2], linear prediction-based (LP-based),
and modulation-transfer-functions (MTF) [3], which aimed to
model the inverse filter of the bone conduction. These methods
require parameters that are heavily reliant on the information
of the corresponding clean AC speech, which is not available
in the noisy surrounding environment.

Further studies developed BC speech enhancement methods
that attempted to estimate the features of AC speech from the
BC speech. A common approach is to convert the spectral-
envelope-related features, such as LP-based [3] or cepstrum-
based features in the Mel [5] or linear frequency scale [6].
The feature conversion models can be either deterministic [7]
or statistical such as a Gaussian mixture model [8], deep feed-
forward neural network (DNN) [6], denoising autoencoder
(DDAE) [5], or long short-term memory network (LSTM) [9].
Although the statistical models give prominent results, these
models require a large-scale AC-BC speech database, where
the AC and BC speech signals are recorded simultaneously.
Such an AC-BC speech database is too costly to obtain, so
the available data size is small, i.e. a low-resource scenario.
As a result, current statistical models fail on unseen speakers
whose speech data are not in the training dataset.

We proposed a BC speech enhancement method to over-
come the above problems. We used gammachirp filterbank
cepstral coefficients (GCFCCs) as the target features and de-
signed our feature conversion model on the basis of the vector-
quantized variational autoencoder (VQVAE) [10], which we
named BCE-VQVAE. Our idea is to build a dictionary of AC
speech features using VQVAE and ’look up’ the BC speech
features in the dictionary for enhancement. The BCE-VQVAE
could utilize the large-scale clean AC speech database with
higher speaker diversity to improve the enhancement results on
the small-size AC-BC database. Also, the features based on the
gammachirp filterbank were shown to have a high correlation
with speech intelligibility [11] as well as the recognition rate
of the ASR systems [12]. Thus, the use of the GCFCCs is to
improve the quality of enhanced speech.

In the rest of the paper, Section II describes the details, and
Section III shows the evaluations of the proposed method.
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Fig. 1: Block diagram of the proposed method.

II. PROPOSED METHOD

The processing flow of the proposed BC speech enhance-
ment method is shown in Fig. 1. We present the detailed
information in the below sections.

A. Gammachirp Filterbank Cepstral Coefficients

The gammachirp filterbank (GCF) [13] is a model of
the auditory filterbank - a set of band-pass filters reflecting
the frequency selectivity on the cochlea [14]. The impulse
response of the filter with a center frequency fc is defined as

g(t) = atn−1e−2πbERB(fc)t cos (2πfct+ c ln t) , (1)

where a is the amplitude, n is the order of filter, b is the
bandwidth, c is the chirp rate, and the equivalent rectangular
bandwidth ERB(fc) is defined as

ERB(fc) = 24.7 + 0.108fc . (2)

For computation, the set {fc(k)}Kk=1 of K center frequencies
are selected in accordance with Slaney’s Auditory Toolbox1.

The GCFCCs can be obtained in the frequency domain from
the magnitude spectrogram M by two steps:

– Step 1: Compute GCF magnitude spectrum

gk,r = (VM)k,r =
∑
l

exp (cθk,l)

Bk (2πDk,l)
nml,r , (3)

where

Dk,l =
√
B2

k +∆f2k,l , (4)

θk,l = arctan
∆fk,l
Bk

, (5)

Bk = bERB(fc(k)) , (6)

∆fk,l =
lfs
2N

− fc(k) . (7)

– Step 2: Compute GCF cepstral coefficients

ck′,r =
K∑

k=1

uk′,k log10 (gk,r) . (8)

1https://engineering.purdue.edu/∼malcolm/interval/1998-010/

In Eq. (3) and Eq. (8), V = {vk,l} is the magnitude frequency
response of the k-th filter in the GCF [15] normalized by
the filter’s bandwidth, U = {uk′,k} is the orthonormal
basis representing the discrete cosine transform [16], l is the
frequency bin index of N frequency bins, r is the frame index,
k′ is the cepstral coefficient index, and fs is the sampling
frequency. The inverse of the GCFCCs extraction is done by
inverting U and V straightforwardly.
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Fig. 2: Block diagram of the proposed BCE-VQVAE model
in AC-pre-training and BC-enhancement stages.
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B. Proposed BCE-VQVAE Model

Our idea is to construct a fixed dictionary from AC speech
features and make the enhancement model map the BC speech
features to the correct items in the dictionary. For this purpose,
we designed our BC speech enhancement model by using the
VQVAE [10], called BCE-VQVAE.

The VQVAE [10] is a generative model that can capture a
data distribution by a finite discrete latent space. This property
makes VQVAE suitable for our purpose. The model includes
an encoder φ, codebook C, and decoder ψ. With input feature
x, VQVAE optimizes the following loss function L

L = ∥x− x̂∥2 + ∥q− sg(h)∥2 + β ∥h− sg(q)∥2 , (9)
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where

h = φ(x) , (10)

q = argmin
q̃∈C

∥h− q̃∥2 , (11)

x̂ = ψ (h+ sg(q− h)) . (12)

and the stop-gradient function sg(x) was defined in [10].
On the basis of VQVAE, we proposed the BCE-VQVAE

with two stages of training: AC-pre-training and BC-
enhancement stages. The process flow of each stage was
illustrated in the block diagram in Fig. 2. Inspired by [17],
the BCE-VQVAE contains H stacked VQVAEs (see Fig. 2),
where φh

x, φh
y , ψh, and Ch are the AC and BC encoders, de-

coder, and codebook, respectively, at level h (h = 1, . . . ,H).
The encoders and decoders have WaveNet-based architecture
(WNA) [18] illustrated in Fig. 3. Also, we defined

hh
ν = Conv1d

(
φh
ν

(
. . . φ2

ν

(
φ1
ν (Cν)

)))
, (13)

qh
x = argmin

q̃∈Ch

∥∥hh
x − q̃

∥∥2 , (14)

ehx = hh
x + sg

(
qh
x − hh

x

)
, (15)

Cx̂,x = ψ1
([
e1x ψ2

(
. . . ψH−1

([
eH−1
x ψH

(
eHx

)]))])
,

(16)

Cx̂,y = ψ1
([
h1
y ψ2

(
. . . ψH−1

([
hH−1
y ψH

(
hH
y

)]))])
.

(17)

where Cx and Cy are the GCFCCs of AC and BC speech,
respectively, and the symbol ν is in {x, y}. In the AC-pre-
training stage,

{
φh
x, ψ

h, Ch
}H

h=1
are trained to capture the

distribution of Cx using the loss function as

LAC = γLSISDR(sx, sx̂) + ∥Cx −Cx̂,x∥2

+
∑
h

(∥∥qh
x − sg(hh

x)
∥∥2 + β

∥∥hh
x − sg(qh

x)
∥∥2) , (18)

where

LSISDR(sx, sx̂) = −10 log10

(
s⊤x sx̂

)2
∥sx∥2 ∥sx̂∥2 − (s⊤x sx̂)

2 . (19)

sx and sx̂ are waveform of AC speech and the reconstructed
waveform from Cx̂ (as in Fig. 1). The LSISDR is the scale-
invariant signal-to-distortion ratio loss [19], which makes the
output magnitude features able to match well with the phase
information. In the BC-enhancement stage, the

{
φh
y

}H

h=1
are

trained to enhance Cy using the loss function as

LBC = γLSISDR(sx, sx̂) + ∥Cx −Cx̂,y∥2

+
∑
h

β
∥∥hh

y − sg(qh
x)
∥∥2 . (20)

1) F0 Injection: The cut-off frequency of bone conduction
is about 1 kHz, while the F0 of human speech varies from 60
to 300Hz. Therefore, the F0 information should be preserved
in BC speech. Thus, we propose to concatenate the log F0
information to the inputs of the BC encoders (see Fig. 2) to
improve BC encoders. Probabilistic YIN (PYIN) [20], which is
one of the most powerful frame-wise F0 estimation algorithms,
was used for F0 estimation.

2) Data Augmentation: We trained the model with aug-
mented data, then fine-tuned it on the AC-BC dataset. From
the clean AC speech, we synthesize artificial BC speech by
modeling bone conduction and recording noise. We model
bone conduction by applying the measured power transfer
function from the oral cavity to the temporal region on
the magnitude spectrum of AC speech [21] while randomly
distorting the phase spectrum of which frequencies are above
3 kHz. The recording noise is modeled by the white noise
with the signal-to-noise ratio randomly from 15 to 25 dB.
According to our preliminary experiments, the fine-tuning
process hardly converges on the AC-BC dataset.

III. EVALUATIONS

A. Data, Configurations, and Experimental Setups

The AC-BC speech dataset was recorded from 14 speakers
(ten males and four females) in a soundproof room. The BC
microphone was the TEMCO HG70. The speech data from 12
speakers were used for training (seen speakers). The remaining
data from one male speaker and one female speaker were used
for evaluation (unseen speakers). Each speaker pronounced 46
Japanese utterances. For the AC-pre-training stage, the clean
Japanese utterances from the ’parallel100’ and ’nonpara30’
subcorpora of the JVS dataset [22] were used. All the signals
were re-sampled to 16 kHz.

Both the short-time Fourier transform (STFT) and the PYIN
algorithm use a 32-ms window with a hop length of 8ms. The
GCF consists of 32 gammachirp filters with c = −2, b = 1,
n = 4, fmin = 60Hz, and fmax = 8 kHz.

The BCE-VQVAE had H = 3 stacked VQVAEs. Each
Conv1d layer had 128, 64, and 64 output channels for h =
(1, 2, 3), respectively. The kernel size of all Conv1d layers
was three. In the WNA, we set W = 6 and the dilation
list is (1, 2, 4, 1, 2, 4) (see Fig. 3). The Adam optimizer [23]
was used with a learning rate of 10−4 and a 16-sample batch
per iteration. Each sample was a 4.088-s segment of speech
signals. When fine-tuning the model on the AC-BC dataset,
the learning rate was 10−5, and the batch size was two.

We used three objective evaluation metrics, i.e., perceptual
evaluation of speech quality (PESQ) [24], short-time objective
intelligibility (STOI) [25], and syllable error rate (SER) of the
ASR systems. PESQ is a metric to measure speech quality
while STOI is well-known to evaluate intelligibility. The range
of PESQ is from −0.5 to 4.5 while that of STOI is from 0 to 1.
A higher score means better speech quality and intelligibility.

The SER is used to measure how well the speech signals
can be recognized in a practical ASR system regarding the
acoustic units of utterances, i.e., syllables. Since we used the
Japanese corpus, the SER is equivalent to the character error
rate of the katakana transcriptions. In Japanese, katakana is
a writing system representing the syllables. The SER was
computed from the two audio signals via three steps:

1) Transcribe both speeches to texts using Google ASR2.
2) Convert the texts to katakana.

2https://cloud.google.com/speech-to-text
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Fig. 4: PESQ, STOI, and SER of BC speech, the enhanced speech by current methods and by our methods on seen and unseen
speakers.
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Fig. 5: PESQ, STOI, and SER of BC speech and the enhanced speech using the AC speech features in the current methods
and in our methods.

3) Compute the SER by the following formula

SER (%) =
S +D + I

N
× 100% , (21)

where S, D, and I are the numbers of substitutions, dele-
tions, and insertions, respectively, required to transform
one text into another.

The value of the SER is positive and can be larger than 100%.
The lower the SER, the more accurately the degraded speech
is recognized by the ASR systems.

B. Evaluations

The box plots in Fig. 4 shows the evaluation results of
the proposed methods compared with some state-of-the-art
methods including line spectral frequencies (LSF) with LSTM
[9], linear low-order cepstral coefficients (LC) with DNN [6],
and Mel-scale log-spectrogram (M) with DDAE [5]. Also, we
compared two versions of the proposed methods: with and
without F0 injection. The results are shown for both the seen
and unseen speakers (see Section III-A). The line at the notch,
the lower, and the upper edges of each box denotes the median,
the first, and third quartiles of the data. The upper and lower
whiskers denote the 5-th and 95-th percentiles. The mean is
identified with the red diamond marker.

From Fig. 4a and 4b, the proposed methods significantly
enhanced the BC speech and outperformed the current meth-
ods in terms of PESQ and STOI for both seen and unseen
speakers. From Fig. 4c, the proposed methods had considerable

improvement on seen speakers in terms of SER, yet the
improvement was slight for unseen speakers. The proposed
method with F0 information also gave higher results than the
one without F0 information.

Furthermore, we evaluated the enhanced speech when the
features of AC speech were given. The purpose of this
evaluation was to reveal which features were effective for BC
speech enhancement. Fig. 5 shows the evaluation results of
the enhanced speech by GCFCCs and other features including
LSF [9], LC [6], and M [5] on the whole AC-BC dataset. We
also considered a special case of GCFCCs when c = 0, which
is the gammatone filterbank cepstral coefficients (GTFCCs).
From Fig. 5, the results indicated that the M, GTFCCs, and
GCFCCs outperformed in STOI. The mean and median PESQ
scores given by the GTFCCs and GCFCCs were slightly higher
than the M but lower than the LC. Although all the LC, M,
GTFCCs, and GCFCCs provided zero-median in SER, the
deviations of the SER given by GTFCCs and GCFCCs were
smaller.

C. Discussion

From the evaluation results, our proposed method gave the
best results when dealing with both seen and unseen speakers.
The incorporation of F0 information could improve the results
significantly for seen speakers. Thus, the F0 injection seemed
to overfit the seen data. Our method modified the magnitude
features while keeping the phase information unmodified.
When there is a mismatch between the unmodified phase and

24



the modified magnitude, distortions can occur, which prevents
the SER from improving.

We observed that, overall, the auditory-filterbank-based fea-
tures such as GCFCCs and GTFCCs gave slightly better results
than other features. The Mel filters have a symmetrical triangle
shape, while the shapes of the gammatone and gammachirp
filters resemble the frequency selectivity of human auditory
system. The bandwidth and frequency scale of Mel filters and
gammatone/gammachirp filters are also different. These results
affirm the importance of auditory-filterbank-based features in
enhancing BC speech signals.

IV. CONCLUSIONS

We proposed a method for bone-conducted (BC) speech
enhancement using gammachirp filterbank cepstral coefficients
(GCFCCs) features incorporated into BC speech enhancement
vector-quantized variational autoencoder (BCE-VQVAE) to
exploit the clean air-conducted (AC) speech database. We
conducted three evaluations including perceptual evaluation
of speech quality (PESQ), short-time objective intelligibility
(STOI), and syllable error rate (SER) in Google ASR systems
to evaluate the effectiveness of the proposed method. The re-
sults indicated that the proposed method outperformed current
methods for both seen and unseen speakers. Especially, when
dealing with unseen speakers, the proposed method gave the
best improvement in terms of PESQ and STOI. The results also
revealed that auditory-filterbank-based features are important
for speech quality and intelligibility. For future work, the
enhancement of phase information and further research in
effectively using F0 information should be considered to
enhance BC speech further.
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