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Abstract—This paper introduces a theoretically-rigorous sound
source localization (SSL) method based on a robust extension
of the classical multiple signal classification (MUSIC) algorithm.
The original SSL method estimates the noise eigenvectors and the
MUSIC spectrum by computing the spatial covariance matrix of
the observed multichannel signal and then detects the peaks from
the spectrum. In this work, the covariance matrix is replaced with
the positive definite shape matrix originating from the elliptically
contoured α-stable model, which is more suitable under real
noisy high-reverberant conditions. Evaluation on synthetic data
shows that the proposed method outperforms baseline methods
under such adverse conditions, while it is comparable on real
data recorded in a mild acoustic condition.

Index Terms— sound source localization, MUSIC, α-stable
theory, covariation

I. INTRODUCTION

Sound source localization (SSL) aims at determining the
source position in the space. It is essential for various machine
listening applications such as sound event localization and de-
tection [1], sound source separation [2] and speech enhance-
ment [3]. Although it is a well-studied problem that benefits
from decades of literature, the task of SSL still challenges to-
day’s technologies under adverse conditions due to noise [4],
long reverberation and acoustic reflections [5], [6]. Most SSL
state-of-the-art algorithms exploit the correlation between the
observed data and build a function with respect to candidate
source locations. For instance, the popular steered response
power phase transform (SRP-PHAT) approach [7] computes
correlation coefficients considering only the phase information
of the signal. Then, the SSL is achieved by finding maxima
through a grid search of potential locations.

Alternatively, the multiple signal classification (MUSIC)
method aims to separate the noise and source subspaces via
eigenvalue decomposition of the observed covariance matrix.
Then, the so-called pseudo spectrum function exhibits peaks
corresponding to the source positions. Therefore, most studies
on SSL have investigated extensions of such methods to face
real-world challenging scenarios. Under a low signal-to-noise

All the code used to produce the results of this paper is available at https:
//github.com/matfontaine/alphaMUSIC.

ratio (SNR) condition, the work of [4] proposes a normaliza-
tion along the frequency axis of the MUSIC pseudo-spectrum
that increases the SSL accuracy. The work of [8] proposed
an extension of the MUSIC method in the presence of multi-
ple highly-correlated sources. Moreover, the generalized eigen-
value decomposition (GEVD-MUSIC) [9] introduced a notable
improvement to deal with noise stronger than the source signal.
This approach was later extended for real-time applications
in [10], [11]. Finally, the work of [12] outlines recent devel-
opment in deep learning-based approaches that provide robust
data-driven extensions of such well-known baseline methods.

A basic assumption of the MUSIC approach is that the source
and noise subspaces are orthogonal to each other. In practice,
this concerns the estimation of the underlying true mixture co-
variance matrix which may be strongly biased when dealing
with non-stationary noise and reverberation. Therefore, another
research direction comprises models to a surrogate such matrix
or its components. In [13], the authors propose a generalized
covariance (GC) framework that summarizes a plethora robust
estimators, including the covariation method [14] and new non-
linear function-based GC (e.g., hyperbolic tangent). Besides, a
natural way to get a positive definite shape matrix was designed
in [15] for various complex elliptically contoured distributions.
Recent researches also focused on using complex multivari-
ate elliptically contoured α-stable (α-EC) distributions for SSL
where parameters are estimated through the empirical character-
istic function (ECF) [16]. However, ECF-based algorithm can
be tricky to estimate [17]. The α-stable distributions gather all
random vectors that satisfy the reproductive property [18], while
α-EC is a subclass of multivariate distribution parameterized
by a positive definite shape matrix and a tail-index α ∈ (0, 2]
measuring the heaviness of the distribution. A description of
other α-based SSL algorithms can be found in [19], [20].

In this paper, we propose to exploit the α-EC through
a covariation-based parameter estimation on the observation
shape matrix that does not require computing the ECF. The co-
variation theoretically still exists even when the observations
are non-Gaussian and is more suitable in a noisy scenario.
Moreover, we include the proposed estimation in [21] of the
tail-index α to capture the dynamic range of the signal and
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show the performance and time consumption in several SSL
scenarios on both synthetic and real data.

II. MUSIC: THE BASIC APPROACH TO SSL

This section outlines SSL methods based on the MUSIC al-
gorithm. We first recall the pioneering one [22] in Section II-A
and then overview the variants in Section II-B. Let us assume
that the observed signal is captured by a microphone array com-
posed of M sensors and represented in the short-time Fourier
transform (STFT) domain as xft ≜ [x1ft, . . . , xMft]

⊤ ∈ CM ,
where f ∈ {1, . . . , F} and t ∈ {1, . . . , T} are the frequency
and frame indexes, respectively. Here ≜ denotes the equality
by definition and ⊤ the transposition.

A. MUSIC Framework

Assuming the STFT window length is larger than the rever-
beration time, for all f, t the STFT of the recorded observed
signals read [23]

xft = Afsft + nft, (1)

where sft ∈ CN are the N < M punctual sources, Af ∈
CM×N is the mixing matrix, and nft is an additive white noise
component with variance σ2 uncorrelated to the signal sft. We
assume that the sources are located sufficiently far from the
array to hold the plane wave assumption. In this context, the
SSL task reduces to estimate the angle of arrival (AOA) of target
sources. From Eq. (1), the covariance matrix Rx,ft of xft reads

Rx,ft ≜ E
[
xftx

H
ft

]
= AfRs,ftA

H
f + σ2IM , (2)

where H is the Hermitian transposition, Rs,ft is the covariance
matrix of sft and IM is the identity matrix of size M ×M .
Assuming stationary sources, Eq. (2) is then time-averaged

R̂x,f ≜
1

T

T∑
t=1

xftx
H
ft. (3)

The full column rankness of Af , the positive definiteness of
Rs,ft and R̂x,f implies that the N largest eigenvalues of R̂x,f

are associated to the signal space and the N −M other ones
to the noise space. Let {vp,f}N−M

p=1 be the noise eigenvectors
spanning the noise space Qn,f ≜ [v1,f , . . . ,vN−M,f ]. Then

AH
f vl,f = 0 (4)

can be proved and means that the steering vectors associated
to their AOAs are orthogonal to the noise eigenvectors. We
obtain the so-called pseudo-spectrum function for an arbitrary
angle of arrival θ and its steering vector af (θ):

PMUSIC
f (θ) =

1

aHf (θ)Qn,ftQH
n,ftaf (θ)

. (5)

From Eq. (4), the denominator in Eq. (5) is supposed to be
closed to zero when the angular direction θ is one of the sources
resulting in a peaked function. Therefore, assuming that the
number of sources N is known, the SSL task is performed by
selecting the N highest peaks of

∑
f P

MUSIC
f (θ) evaluated on

a set of candidate sources’ AOA {θl}Ll=1.

B. MUSIC Variants

The performance of MUSIC is known to decrease in case
of coherent sources occurring in complex audio scenarios [8],
and several works have tried to improve its robustness to
different environments. NormMUSIC [4] reduces the incorrect
response power estimation due to the SNR variations at different
frequencies by arithmetic mean normalization of Eq. (5), i.e.,

PNormMUSIC(θ) =

F∑
f=1

PMUSIC
f (θ)

max
l=1,...,L

PMUSIC
f (θl)

. (6)

GC-MUSIC [13] deals with impulsive noises that do not
fit the Gaussian assumption in Eq. (1), and thus degrades the
covariance matrix estimation. It replaces Rx,ft in Eq. (2) by a
generalized covariance (GC) matrix R

(GC)
x,ft whose entries are

defined as[
R

(GC)
x,ft

]
mm′

= E
[

g1(xftm)g2(xftm′)

h1(xftm, xftm′)h2(xftm′ , xftm′)

]
(7)

with g1, g2 are two single-variable functions while h1, h2

are two dual-variable functions. The covariance occurs when
g1(u) = u, g2(u) = u⋆, h1 = h2 = 1, where ⋆ is the conju-
gate operator. GC includes a covariation-based matrix version
that we discuss further in the next Section.

III. α-MUSIC: THE PROPOSED APPROACH TO SSL

The α-stable random vectors are the ones that preserve the
law under a finite linear combination [18]. The heaviness of the
distribution is controlled by a tail-index α ∈ (0, 2] for whose
α = 2, α = 1 and α = 0.5 represent the Gaussian, Cauchy and
Levy case ranging from lightest to heaviest respectively. Most
of those distributions however are not parameterized with a GC
matrix but rather via a spectral measure [18]. For 1 < α ≤ 2,
the so-called covariation [18] provides a correlation information
controlled by the spectral measure of two α-stable variables.

A complex multivariate elliptically contoured α-stable distri-
bution (α-EC) [24], [25] vector u of size M is an α-stable vec-
tor which naturally designs a so-called positive definite shape
matrix R(α) ∈ CM×M and will be denoted u ∼ SαC

(
R(α)

)
.

Contour plot of α-EC are represented in Fig. 1. A link between
the shape matrix coefficients

[
R(α)

]
mm′ and the covariation

coefficients denoted r
(α)
mm′ was established [18]:

[
R(α)

]
mm′

=

2
(
r
(α)
mm

)2/α

if m = m′

2α/2r
(α)
mm′

[
R(α)

]−α−2
2

m′m′ otherwise
(8)

Our main purpose is to build a natural positive definite matrix
estimator essential for MUSIC to work in practice. As recently
shown in [16], a MUSIC-based α-EC model as follows:

xft ∼ SαC
(
R

(α)
x,ft

)
, (9)

sft ∼ SαC
(
Diag

[
σα
1ft, . . . , σ

α
Nft

]
≜ R

(α)
s,ft

)
, (10)

nft ∼ SαC
(
σα
ftIM

)
(11)
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Fig. 1. Contour plot from Gaussian (in red) and α-EC (in blue) samplings.

combined with Eq. (1) and Eq. (9 - 11) leads to

R
(α)
x,ft = µft

(
AfR

(α)
s,ftA

H
f + σ2IM

)
(12)

with µft ≜ 2
2−α
2

[
σα
ft +

∑N
n=1 σ

α
nft

] 2−α
α

. In [16], Eq. (12) is
estimated using the empirical characteristic function (ECF).
We rather propose a covariation-based estimation in order to
avoid drawing sampling issues in ECF computation [17].

From Eq. (8), the shape matrix R
(α)
x,ft estimation is equivalent

to compute covariation coefficients between all xft entries.
The sources immobile assumption motivates to use a time-
independent covariation estimator r̂

(α)
f,mm′ between all xftm

and xftm′ . The estimation is processed through the following
fractional lower order moment technique [17]:

r̂
(α)
f,mm′ =

exp
[
α−1(T−1

∑T
t=1 ln |xftm| − η)

]
if m = m′∑T

t=1 xftm|xftm′ |p−2x⋆
ftm′∑T

t=1 |xftm′ |p r̂f,m′m′ otherwise

(13)

where 1 ≤ p < α and η = γ(α−1 − 1) − ln 2 with γ ≈
0.577 the Euler constant. An empirical estimator R̂

(α)
x,f ≜[

r̂
(α)
f,mm′

]
m,m′

is obtained by combining Eq. (13) and Eq. (8)

along the frequency axis. We force R̂
(α)
x,f to be Hermitian by

considering R̂
(α)
x,f ← 1

2

(
R̂

(α)
x,f +

[
R̂

(α)
x,f

]H)
. Due to an α-EC

observed model, the tail-index α can be estimated as in [21].
The positive definiteness of R̂(α)

x,f and Rs,ft leads to a fractional
noise space Q

(α)
n,f and the following pseudo-spectrum function

Pα−MUSIC(θ) =
1

F

F∑
f=1

1

aHf (θ)Q
(α)
n,f

(
Q

(α)
n,f

)H

af (θ)

. (14)

The proposed α-MUSIC can be easily extend to α-
NormMUSIC by combining Eq. (14) and Eq. (6). All MUSIC
algorithms variants are outlined in Algorithm 1.

IV. EXPERIMENTS

We investigate the SSL performances of both proposed α-
MUSIC and α-NormMUSIC with MUSIC [22], NormMU-
SIC [4] and SRP-PHAT [26] as baselines.1 Two types of

1as available in pyroomacoustics library [27].

Algorithm 1 MUSIC algorithms and variants
1) Input

a) Number of sources N and observed signal xft;
b) Candidate AOAs {θl}Ll=1 and related steering vec-

tors af (θl).
2) (fractional) pseudo-spectrum function estimation

a) Optional: estimation of α using xft as in [21];
b) Compute R̂f according to Eq. (2) or Eq. (13) for

MUSIC or α-MUSIC respectively;
c) Estimate the noise eigenspace Qn,f (or Q(α)

n,f );
d) Compute ∀l, P (θl) according to Eq. (5) or Eq. (14)

for MUSIC or α-MUSIC respectively;
e) Optional: Apply Eq. (6) to get ”Norm” extension.

3) Apply pick detection on P (θl).

dataset are used: a synthetic dataset made with LibriSpeech
utterances [28] to generate microphones recordings through
pyroomacoustics simulator [27] corrupted by various real
noise coming from DEMAND dataset; and a real dataset com-
ing from LOCATA Challenge. The tail-index α in proposed
SSL algorithms is estimated with the same setting as in [21]
and 1 ≤ p < 2 in Eq. (13) is set to α+1

2 . The SSL perfor-
mances are evaluated in terms of the angular error in degree.
As a proof of concept, only the azimuth estimation for single
and multiple sources is considered. In the case of N > 1, the
mean error is computed first over the N sources and then av-
eraged over all the observations.

A. Experiments on the Synthetic Data

The synthetic dataset exploits 4 settings summarized in Ta-
ble I for whose one of the following key scenario conditions
is varying and the other ones are fixed: the number of mi-
crophones M , reverberation time (RT60), signal-to-noise ratio
(SNR) and energy of acoustic reflections.2

Otherwise specified, we considered a shoebox room of size
6×5×3 m in mild acoustic conditions (SNR = 10 dB, RT60 =
0.5 s) with Gaussian noise. Here N ∈ {1, 2, 3} sound sources
are deployed at a fixed distance of 1 m and elevation of 0◦

with respect to a linear uniform array with an inter-microphone
spacing of 8 cm. For a fixed value N , 180 observations are
generated by randomly drawing sources’ azimuth and the free
scenario parameter. The sampling rate of microphone signals
is 16 kHz. The STFT of the data is computed with a window
length of 32 ms, overlap of 50% and 513 real frequencies. Only
the frequency range 500 - 4000 Hz was considered. Finally,
the resolution of the candidate azimuths grid is 1◦.

At first, we study the influence of the tail-index α for more
insight on this parameter. The results in Fig. 3 show that α
increases when the RT60 increases in DRT60 and the SNR de-
creases in DSNR, respectively. Since no significant trend is ex-

2If RT60, room size, and array position are fixed, then increasing the energy
of the reflection corresponds to “sending” the sources closer to the room
reflectors. The source-to-array distance is then used as a proxy for studying
the robustness to acoustic reflections.
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Fig. 2. Angular Error (in degree) as a function of different acoustic parameters (SNR, RT60 and sources-to-microphone distance) involving 3 sources and a
linear microphone array of 4 sensors. Details of the dataset used to study each parameter are reported in Tab. I.

TABLE I
DATASET CONDITION FOR SYNTHETIC EVALUATION.

M mics RT60 [s] SNR [dB] Sources’ dist. [m]
Dmics [4, 6] 0.5 10 1
DRT60 4 U [0.25:0.25:1.5] 10 1
DSNR 4 0.5 U [-20:10:30] 1
DEcho 4 0.5 10 U [1:0.5:3]
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1.0

1.5

2.0

α

DSNR [RT60 = 0.5 s, d = 1 m]
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α

DRT60 [d = 1 m, SNR = 10 dB]

Fig. 3. Value of α as function of the SNR (top) and RT60 (botton).

hibited when varying the echo energy in the DEcho, the figure
is not reported. Previous studies in [29], [30] pointed out that
the clean speech is better modelled with α = 1.2, following
our results. A small variability of the α values is noted regard-
ing extreme SNR scenarios and could be explained by a low
dynamic range of the observed signal.
Fig. 4 show the results in terms of MAE for the proposed α-
MUSIC with either an α estimation or a fixed α ∈ {1.5, 1.8, 2}
for N ∈ {1, 2, 3} sources in the Dmics setting. Note that when
α = 2, it corresponds to the vanilla MUSIC case. The estimated
α-MUSIC version is slightly better than other variants in terms
of 95% confidence interval and median value for N = 3. The
gap between MUSIC and α-MUSIC seems unchanged as the
number of microphones increases. As the SSL performances
increase with the number of microphones, no significant differ-
ence between the different methods is, hence, not reported here.

Results in term of MAE of retrieved azimuths for the differ-
ent acoustic parameters of DSNR,RT60 and DEcho for N = 3
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Fig. 4. Angular Error (in degree) for N ∈ {1, 2, 3} sources and M ∈ {2, 4}
microphones in the uniform linear array.

TABLE II
TIME ELAPSED IN SECONDS. FASTEST IS BOLDED.

MUSIC NormMUSIC SRP-PHAT α-MUSIC α-NormMUSIC
M = 2 0.008 0.008 0.018 0.016 0.016
M = 4 0.015 0.015 0.028 0.030 0.030
M = 6 0.024 0.023 0.041 0.049 0.049

sources and M = 4 microphones are shown in Fig. 2. In gen-
eral, it can be noticed that the proposed approach slightly out-
performs the standard MUSIC approaches in case of strong
adverse conditions (SNR < - 10 dB, RT60 > 0.25, distance >
1.5 m). This small deviation may be the result of having used
an additive Gaussian noise in our experiments which is too far
from an α-stable noise. While SRP-PHAT outperforms both
MUSIC and α-MUSIC in terms of MAE of the retrieved angles,
it fails at recovering more than 2 sources in more than 57% of
the observations. Conversely, all MUSIC-based algorithms al-
ways estimated N different sources. Nevertheless, a noticeable
difference is reported in the RT60 scenario, confirming that α-
NormMUSIC is better suited in case of strong reverberation.

Finally, the empirical time elapsed in seconds is reported in
Tab. II. The proposed extension is two times slower than the
baselines, mainly due to the α estimation step. Nevertheless, as
the overall latency is in the order of milliseconds, the proposed
algorithm is suitable for real-time applications.
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TABLE III
MEAN ANGULAR ERROR ± STANDARD DEVIATION FOR TASK #1 (SINGLE STATIC

SOURCE) AND TASK #2 (MULTIPLE STATIC SOURCES) ON THE LOCATA DATASET

Task Algorithm DICIT array Robot Head Hearing aids

1

MUSIC 3.09 ± 7.91 2.14 ± 1.66 7.77 ± 16.62
NormMUSIC 2.74 ± 6.85 2.00 ± 6.64 1.25 ± 3.46
SRP PHAT 4.42 ± 10.92 1.84 ± 2.13 1.77 ± 5.06
α-MUSIC 4.07 ± 9.57 2.91 ± 3.43 6.77 ± 15.80

α-NormMUSIC 3.34 ± 9.40 1.83 ± 6.25 1.27 ± 3.71

2

MUSIC 10.86 ± 13.73 15.61 ± 15.93 24.56 ± 15.26
NormMUSIC 10.39 ± 14.45 16.35 ± 14.71 22.30 ± 15.68
SRP PHAT 16.19 ± 14.18 20.29 ± 16.24 17.35 ± 16.09
α-MUSIC 12.48 ± 13.87 15.39 ± 15.15 24.31 ± 15.23

α-NormMUSIC 10.81 ± 14.12 17.43 ± 15.45 23.04 ± 15.38

B. Experiments on the Real Data

The LOCATA dataset comprises recordings from a room
of size 7.1×9.8×3 m with RT60= 0.55 s affected by some
low noise. We use the development tasks # 1 and #2 featuring
single and multiple static speakers, respectively, for the DICIT
array, Robot head and Hearing aids. As in LOCATA challenge,
the scores are computed on speech-only frames, using the voice
activity detection annotations provided within the ground-truth
data. The data are processed with the same parameters as above.

Results are reported in Table III. We observed that the
proposed methods do not consistently outperform the baselines.
Interestingly, this trend is common to the normalized version
of MUSIC. Therefore, these results confirm that our methods
should be tested on a real dataset featuring a stronger level of
noise and reverberation, such as the one envisioned in [31].

V. CONCLUSION

This paper proposes α-MUSIC, a theoretically justified adap-
tive sound source localization (SSL) method based on a variant
of the classical multiple signal classification (MUSIC) method
with the complex multivariate elliptically contoured α-stable
model. We show that in case of multiple static sources and high
reverberation, high distance or low SNR α-MUSIC is more
robust. Future work includes α-MUSIC with time-varying α
and experiments with α-stable or impulsive noise.
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