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Abstract—We propose source localization methods for multiple
sound sources. The proposed method requires only an observation
of a sound pressure and its spatial gradient at one fixed point,
which can be realized by a small microphone array. The key idea
is to utilize the partial differential equation relating the observed
signals and the source position, which was originally proposed for
the direct method for the single source localization problem. We
extend this framework using stochastic modeling and proposed
a method for the mutliple source localization in the presence
of noises. Two source localization methods are proposed: one
is the expectation-minimization algorithm for a given number
of sources, and the other is the variational Bayesian inference
for an unknown number of sources. By numerical experiments,
the localization accuracies of the two proposed methods are
compared with the baseline method.

Index Terms—source localization, microphone array,
expectation-maximization algorithm, variational Bayesian
inference algorithm.

I. INTRODUCTION

Sound source localization technique using a microphone
array has a wide variety of applications such as sonar, robot
audition, and hearing aids [1], [2]. Especially, it is one of
the major challenges to localize multiple sources using a
small microphone array. Various source localization methods
have been proposed in the literature, such as Multiple Signal
Classification (MUSIC) algorithm [3], Generalized Cross-
Correlation methods with Phase Transform (GCC-PHAT) [4],
method based on the sound source constraint partial differen-
tial equation (SSC-PDE) [5], stochastic methods considering
reverberant envionment [6]–[9], and methods using deep neu-
ral network (DNN) [10], [11].

In most source localization methods, a large array with a
large number of microphones is generally preferable since
the source positions are estimated on the basis of the time
difference of arrivals of signals observed by the multiple
microphones. On the other hand, the SSC-PDE-based method,
which utilizes the partial differential equation relating the
observed signal and the source position, enables source lo-
calization only from an instantanesous observation of a sound
pressure and its spatial gradient at one observation position.
Therefore, this method can be realized theoretically by using a
small microphone array with a small number of microphones.
The SSC-PDE is formulated for a direct method of single
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source localization, and by assuming time-frequency sparsity
of the source signals, it can be applied to each time-frequency
component even in the presence of multiple sources [5].
However, its application to multiple source localization prob-
lem, including a clustering scheme of the estimated positions
obtained for each time-frequency component, is still to be
established. We also refer to DNN-based methods [10], [11],
whose approaches are different from those based only on
physical properties of the wave propagation, such as the SSC-
PDE-based method.

Focusing on the capability of the SSC-PDE-based method,
we extend its framework to multiple source localization prob-
lem in the presence of noises based on stochastic modeling
of the observation. As well as the conventional SSC-PDE-
based method, the proposed method is applicable to a small
microphone array as long as a sound pressure and its spatial
gradient at one observation point can be obtained, which has
an advantage in practical feasibility over other methods used
mainly with a large microphone array. We first derive the
expectation-maximization (EM) algorithm [12] for a given
number of sources, and then extend it to the variational
Bayesian inference (VBI) algorithm [13] for an unknown num-
ber of sources. By numerical experiments of multiple source
localization under a reverberant environment, the performance
comparison of the proposed EM and VBI algorithms were
investigated with the baseline MUSIC algorithm.

II. PARTIAL-DIFFERENTIAL-EQUATION-BASED
STOCHASTIC MODELING FOR SOURCE LOCALIZATION

As preliminaries for the proposed methods, this section de-
scribes the observation model for the multiple source localiza-
tion problem, which relates the observation of a sound pressure
and its spatial gradient to the multiple source positions.

A. Sound Source Constraint Partial Differential Equation

We begin by breifly introducing basic theories of the SSC-
PDE, which was proposed by Ando et al. [5]. Let r0 ∈ R3

be the position vector of the sound source. By assuming the
free-field (spherical-wave) propagation from the point source,
the sound pressure at the observation position r ∈ R3 and
time t ∈ R, denoted by f(r, t), is represented by

f(r, t) =
1

∥r − r0∥
g

(
t− ∥r − r0∥

c

)
, (1)
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Fig. 1: Example of array configuration. For example, the
gradient of F with respect to x direction is approximated by
Fx,m ≈ (F1,m − F2,m)/2d.

where g is the source signal, c is the speed of sound, and ∥ · ∥
denotes the Euclidean norm. Therefore, the spatial gradient of
f , denoted by ∇f , is given by

∇f(r, t) = 1

R2
g

(
t− R

c

)
n+

1

cR
ġ

(
t− R

c

)
n, (2)

where R := ∥r−r0∥, n := (r−r0)/∥r−r0∥, and ġ denotes
the temporal derivative of g. On the other hand, the temporal
derivative of f , denoted by ḟ , is given by

ḟ(r, t) =
1

∥r − r0∥
ġ

(
t− ∥r − r0∥

c

)
. (3)

From (2) and (3), we obtain the partial differential equation

∇f(r, t) =
(
1

R
f(r, t) +

1

c
ḟ(r, t)

)
n, (4)

which includes only the observed signal and its spatial and
temporal gradients. This equation is referred to as the sound
source constraint partial differential equation.

B. Stochastic Modeling for Single Sound Source

The SSC-PDE can be rewritten in the frequency domain as

−∇F (r, ω) +

(
1

R
+ j

ω

c

)
F (r, ω)n = 0, (5)

where F is the temporal Fourier transform of f , ω ∈ R
denotes the angular frequency, and j denotes the imaginary
unit. Here, suppose the temporal spectra of the sound pressure
and its spatial gradient are observed by a small microphone
array, for example, as shown in Fig. 1. Various other types of
array, such as commercially available ambisonic microphone
arrays [14] and acoustic vector sensors [15], [16], can also
be used for this purpose. Let {ωm}m denote the set of
discrete frequencies, and F0,m and [Fx,m, Fy,m, Fz,m]T denote
respectively the observation of F (r, ωm) and ∇F (r, ωm) at
a given fixed observation position r. Then, we have where
ϵx,m, ϵy,m, ϵz,m ∈ C are the observation errors caused by the
sensor noises and approximation of the spatial gradient by the
spatial subtraction.

Here, we assume that ϵx,m, ϵy,m, ϵz,m follow indepen-
dently the (circularly-symmetric) complex Gaussian distribu-
tion NC(0, σ

2
m) and that F0,m follows the complex Gaussian

distribution NC(0, σ
2
0,m). Then, from (5), we have

Cm(θ)ym ∼ N (0,Σm) (6)

with θ := {R,n}, i.e., θ denotes the source position, and

Cm(θ) :=


−1

(
1
R + jωm

c

)
nx

−1
(
1
R + jωm

c

)
ny

−1
(
1
R + jωm

c

)
nz

1

 , (7)

ym := [F0,m, Fx,m, Fy,m, Fz,m]T, (8)

Σm := diag
(
σ2
m, σ2

m, σ2
m, σ2

0,m

)
. (9)

Since C(θ) is invertible from det(C(θ)) = −1, we obtain the
probabilistic distribution of the observed signal ym under the
given θ as

p(ym|θ) = NC(ym;0,Cm(θ)−1ΣmCm(θ)−H), (10)

where (·)−H denotes the inverse of the Hermitian conjugate
of a matrix.

C. Stochastic Modeling for Multiple Sound Sources

Various kinds of real-world acoustic signals such as human
speech and music have sparsity in the time-frequency repre-
sentation. Therefore, many practical situations satisfy well an
time-frequency disjointness of the sources, which means each
time-frequency component of the observed signal is assumed
to be dominated by at most one sound source.

Let m, l, and k ∈ N denote indices of the frequency,
time, and sound source, respectively, where k = 0 denotes
the noise signal and k ̸= 0 denotes the signal derived from
the point source. We assume that only the zm,lth source
is active at the frequency m and time l. Then, under the
given zm,l = k, the probability density function of the
observation of the sound pressure and its spatial gradient
obtained by the short-time Fourier transform, denoted by
ym,l := [F0,m,l, Fx,m,l, Fy,m,l, Fz,m,l]

T ∈ C4, is given in a
similar manner with (10) by

p(ym,l|zm,l = k, ϑ) = NC(ym,l;0,Λ
(k)
m,l) (11)

with

Λ
(k)
m,l :=

{
Cm(θ(k))−1Σ

(k)
m,lCm(θ(k))−H (k ̸= 0)

ν2m,lWm (k = 0)
, (12)

Σ
(k)
m,l := diag

(
σ2
m, σ2

m, σ2
m, σ

(k)2
0,m,l

)
. (13)

Here, θ(k) := {R(k),n(k)} denotes the position of the kth
source, and ϑ denotes the set of model parameters consisting
of {θ(k)}k, {σ2

m}m, {σ(k)2
0,m,l}m,l,k, {ν2m,l}m,l. The covarianvce

matrix for the noise component is modeled by ν2m,lWm, where
Wm represents the normalized time-invariant covariance and
ν2m,l represents the power of the noise depending on both time
and frequency. For example, we can define Wm for the diffuse
noise field in accordance with [17].

III. PROPOSED METHODS

On the basis of stochastic modeling described in Sec. II-C,
we propose the EM and VBI algorithms for multiple sound
source localization.
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A. EM Algorithm for Given Number of Sources

Let K ∈ N denotes the number of sources, which is
assumed to be given in this algorithm, and zm,l is assumed to
follow the categorical distribution:

zm,l ∼ Categorical(π
(0)
m,l, π

(1)
m,l, . . . , π

(K)
m,l ). (14)

Here, π(0)
m,l, π

(1)
m,l, . . . , π

(K)
m,l ∈ [0,∞) are nonnegative parame-

ters satisfying
∑K

k=0 π
(k)
m,l = 1. Then, the likelihood function

with respect to ϑ and π := {π(k)
m,l}m,l,k is given by

p(Y |ϑ, π) =
∏

m,l

∑K

k=0
π
(k)
m,lNC(ym,l;0,Λ

(k)
m,l) (15)

with Y := {ym,l}m,l. Therefore, the source localization
problem can be reduced to the maximization problem of the
log likelihood function:

maximize
ϑ,π

log p(Y |ϑ, π). (16)

This maximization problem is difficult to solve in a closed
form; however, the local solution can be obtained by the EM
algorithm [12], where ϑ and π are updated alternately. The
update rules are summarized in Appendix A.

B. VBI Algorithm for Unknown Number of Sources

The number of sources are often unknown in practical
situations. For such cases, we extend the observation model
in Sec. III-A to unknown number of sources using Dirichlet
process mixture model in a similar manner with [18].

We consider infinitely many sources and assume zm,l fol-
lows the categorical distribution for countably infinite indices:

zm,l ∼ Categorical({πk}∞k=0). (17)

Here, πk ∈ [0,∞) is a nonnegative parameter satisfying∑∞
k=0 πk = 1, which represents the probability that the kth

source is active. The probability π0 for the noise component is
modeled as a random variable following the Beta distribution
with hyper parameters αn, βn ∈ [0,∞):

π0 = v0 ∼ Beta(αn, βn). (18)

Moreover, the probabilities {πk}∞k=1 for the point sources
are modeled as random variables following the stick-breaking
process [19] with a hyper parameter βs ∈ [0,∞):

πk = vk
∏k−1

j=0
(1− vk), (19)

vk ∼ Beta(1, βs). (20)

Then, the probability density function of the observed signals
Y under the given parameters ϑ and Z := {zm,l}m,l is given
by

p(Y |ϑ,Z) =
∏

m,l
NC(ym,l;0,Λ

(zm,l)
m,l ). (21)

Moreover, from the stick-breaking process, we have

p(Z|V ) =
∏

m,l
πzm,l

(
πk = vk

∏k−1

j=0
(1− vk)

)
, (22)

p(V ) = Beta(v0;αb, βb)
∏∞

k=1
Beta(vk; 1, βs) (23)

with V := {vk}∞k=0. Therefore, the joint distribution p(Θ, Y )
and the posterior distribution p(Θ|Y ) are obtained using the
prior distribution p(ϑ) as

p(Θ, Y ) = p(Y |ϑ,Z)p(Z|V )p(V )p(ϑ), (24)

p(Θ|Y ) = p(Θ, Y )/p(Y ), (25)

where Θ := {ϑ,Z, V } denotes all the model parameters. The
posterior distribution p(Θ|Y ) is difficult to obtain in a closed
form; however, its approximate distribution can be obtained by
the VBI algorithm [13]. In the VBI algorithm, the distribution
q(Θ) can be obtained iteratively so that the Kullback–Leibler
(KL) divergence between q(Θ) and p(Θ|Y ), defined as

KL(q(Θ)|p(Θ|Y )) =

∫
q(Θ) log

q(Θ)

p(Θ, Y )
dΘ, (26)

is locally minimized under the constraint that q(Θ) can be
decomposed as

q(Θ) = q(N)q(ρ)q(λ)q(ζ)q(γ)q(Z)q(V ). (27)

Here, the model parameters N , ρ, λ, ζ, and γ are defined as

N = {n(k)}k, (28)

ρ = {ρ(k)}k (ρ(k) = 1/R(k)), (29)

λ = {λm}m (λm = 1/σ2
m), (30)

ζ = {ζ(k)m,l}m,l,k (ζ
(k)
m,l = 1/σ

(k)2
0,m,l), (31)

γ = {γm,l}m,l (γm,l = 1/ν2m,l). (32)

The distributions q(N), q(ρ), q(λ), q(ζ), q(γ), q(Z), and q(V )
are updated alternately in the following forms:

q(N) =
∏K′

k=1
vMF(n(k); ξ̄(k), κ̄(k)), (33)

q(ρ) =
∏K′

k=1
NR(ρ

(k); µ̄(k), η̄(k)), (34)

q(λ) =
∏

m
Gamma(λm; ᾱλ,m, β̄λ,m), (35)

q(ζ) =
∏

m,l

∏K′

k=1
Gamma(ζ

(k)
m,l; ᾱ

(k)
ζ,m,l, β̄

(k)
ζ,m,l), (36)

q(γ) =
∏

m,l
Gamma(γm,l; ᾱγ,m,l, β̄γ,m,l), (37)

q(Z) =
∏

m,l
Categorical(zm,l; {π̄(k)

m,l}
∞
k=0), (38)

q(V ) =
∏K′

k=0
Beta(vk; ᾱ

(k)
v , β̄(k)

v ), (39)

where vMF(·), NR(·), and Gamma(·) denotes the von Mises–
Fisher distribution [20], real Gaussian distribution, and gamma
distribution, respctively. Note that the classes of the distribu-
tions from (33) to (37) are kept the same in the iterations by
defining the initial distributions also in the above classes. Here,
K ′ ∈ N represents the truncation of the stick-breaking process,
which corresponds to the assumption q(zm,l = k) = 0 (k ≥
K ′ +1). Note that this truncation does not fix the complexity
of the model but simply restricts the function space for q(Θ)
to a certain extent. Therefore, we can aproximate q(Θ) well
by setting large K ′. The update rules for parameters in (33)
to (37) are summarized in Appendix B.
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Fig. 2: Experimental settings. The blue circle denotes the
center position of the microphone array, and the red crosses
denote the true source positions.

IV. NUMERICAL EXPERIMENTS

We conducted numerical simulations of multiple source
localization in a reverberant environment. A microphone array
with seven microphones, whose configuration is given by
Fig. 1 with d = 0.03m, was located in the center of a
rectangular room, whose size was 6m × 10m × 4m. The
reflection coefficients were set as 0.7308 and 0.4566 so that
the reverberation times from Sabine’s formula were 0.5 s
and 0.2 s, respectively. Three sound sources were located
around the microphone array, whose positions were (1, 0, 0)m,
(−0.5, 0.87, 0)m, and (−0.5,−0.87, 0)m from the center of
the room as shown in Fig. 2. Human speeches from SRV-
DB [21] were used as the source signals. The sampling
frequency of the microphones were 32 kHz, and the frame
length of the short-time Fourier transform were 64ms with
the half overlap.

We compared the four algorithms: the proposed VBI al-
gorithm (denoted by VBI), the proposed EM algorithm with
the correct number of sources K = 3 (denoted by EM1), the
proposed EM algorithm with an incorrect number of sources
K = 6 (denoted by EM2), and the conventional MUSIC
algorithm as a baseline method. For a simple comparison
with the MUSIC algorithm, only the source directions were
evaluated and they were estimated on the xy-plane. The sound
source was detected if

∑
m,l π

(k)
m,lym,l in the EM algorithm,∑

m,l π̄
(k)
m,lym,l in the VBI algorithm, or the angular spectrum

in the MUSIC algorithm was larger than the threshold value.
In the proposed VBI algorithm, the estimated source direction
was given by the posterior mean, i.e., ξ̄(k). The accuracy of
the source localization was evaluated by the F-measure, where
the true positive was defined as the number of the estimated
sources whose direction was within an angle ±τ from some
true source direction, the false positive was defined as the
number of the estimated sources whose direction was not
within an angle ±τ from any true source direction, and the true
negative was defined as the number of the true sources whose
direction was not within an angle ±τ from any estimated
source direction.

Figure 3 shows the F-measure against the angle τ . Here,
for each τ , different threshold values for the source detection

Proposed (VBI)
Proposed (EM1)
Proposed (EM2)
MUSIC

(a) Reverberation time 0.5 s
and signal length 2779ms.

Proposed (VBI)
Proposed (EM1)
Proposed (EM2)
MUSIC

(b) Reverberation time 0.5 s
and signal length 1665ms.

Proposed (VBI)
Proposed (EM1)
Proposed (EM2)
MUSIC

(c) Reverberation time 0.2 s
and signal length 2779ms.

Proposed (VBI)
Proposed (EM1)
Proposed (EM2)
MUSIC

(d) Reverberation time 0.2 s
and signal length 1665ms.

Fig. 3: Estimation accuracy with respect to source directions.

were investigated, and the highest F-measures were plotted.
In most cases, the proposed methods achieved close or higher
accuracies than the baseline MUSIC algorithm. Among the
proposed methods, the VBI algorithm achieved the highest
F-measures in most cases, and the number of sources and
their directions were estimated accurately even though no
assumption on the number of sources was required.

V. CONCLUSION

We proposed sound source localization methods for multiple
source sources. The proposed methods and the baseline MU-
SIC algorithm were evaluated and compared by the numerical
experiments, and their results indicated that the proposed VBI
algorithm was able to estimate both the number of sources and
their directions. Expetimental comparison with other stochastic
methods, further evaluation of source localization including
the source distances, and an online extension of the proposed
algorithm are considered as future works.

APPENDIX

A. Update Rules in Proposed EM Algorithm

The update rules in the proposed EM algorithms are as
below.

n(k)←

∑
m,l π

(k)
m,lλmRe

[(
ρ(k) + jωm

c

)
F0,m,lf̃

∗
m,l

]
∥∥∥∑m,l π

(k)
m,lλmRe

[(
ρ(k) + jωm

c

)
F0,m,lf̃∗

m,l

]∥∥∥ , (40)

ρ(k)(= 1/R(k))←

∑
m,l π

(k)
m,lλmRe

[
F0,m,lf̃

H
m,l

]
n(k)∑

m,l π
(k)
m,lλm|F0,m,l|2

, (41)

λm(= 1/σ2
m)← 3

∑
l

∑K
k=1 π

(k)
m,l/

∑
l

∑K
k=1 π

(k)
m,lA, (42)

ζ
(k)
m,l(= 1/σ

(k)2
0,m,l)← 1/|F0,m,l|2, (43)
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γm,l(= 1/ν2m,l)← 1/yH
m,lW

−1
m ym,l, (44)

π
(k)
m,l ← exp(ϕ

(k)
m,l)/

∑∞
j=0 exp(ϕ

(j)
m,l). (45)

Here, f̃m,l := [Fx,m,l, Fy,m,l, Fz,m,l]
T, and ϕ

(k)
m,l and A are

defined as

ϕ
(0)
m,l = 4 log γm,l− log det(Wm)−γm,ly

H
m,lW

−1
m ym,l, (46)

ϕ
(k)
m,l=3 log λm+ log ζ

(k)
m,l − λmA− ζ

(k)
m,l|F0,m,l|2 (k ̸=0),

(47)

A=(ρ(k)2 + ω2
m/c2)|F0,m,l|2

−2Re[(ρ(k) + jωm/c)F0,m,lf̃
H
m,l]n

(k)+∥f̃m,l∥2. (48)

B. Update Rules in Proposed VBI Algorithm

The update rules in the proposed VBI algorithms are as
below. Variables without overlines (e.g., ξ(k) for ξ̄(k)) denote
parameters for the initial distribution.

ξ̄(k) ← a/∥a∥, κ̄(k) ← ∥a∥, (49)

µ̄(k) ← B/C, η̄(k) ← C, (50)

ᾱλ,m ← 3
∑

l

∑K′

k=1 π̄
(k)
m,l + αλ,m, (51)

β̄λ,m ←
∑

l

∑K′

k=1 π̄
(k)
m,lD + βλ,m, (52)

ᾱ
(k)
ζ,m,l ← π̄

(k)
m,l + α

(k)
ζ,m,l, β̄

(k)
ζ,m,l ← π̄

(k)
m,l|Y0,m,l|2 + β

(k)
ζ,m,l,

(53)
ᾱγ,m,l ← 4π̄

(0)
m,l + αγ,m,l, (54)

β̄γ,m,l ← 4π̄
(0)
m,ly

H
m,lW

−1
m ym,l + βγ,m,l, (55)

π̄
(k)
m,l ← exp(ϕ̄

(k)
m,l)/

∑∞
j=0 exp(ϕ̄

(j)
m,l), (56)

ᾱ(k)
v ←

{∑
m,l π̄

(0)
m,l + αn (k = 0)∑

m,l π̄
(k)
m,l + 1 (k ̸= 0)

, (57)

β̄(k)
v ←

{
βn (k = 0)∑

m,l(1−
∑k

j=0 π̄
(j)
m,l) + βs (k ̸= 0)

. (58)

Here, ϕ̄(k)
m,l, a, B, C, and D are defined as

ϕ̄
(0)
m,l = 4(Ψ(ᾱγ,m,l)−log β̄γ,m,l)+Ψ(ᾱ(k)

v )−Ψ(ᾱ(k)
v +β̄(k)

v )

−log det(Wm)−(ᾱγ,m,l/β̄γ,m,l)y
H
m,lW

−1
m ym,l,

(59)

ϕ̄
(k)
m,l = 3(Ψ(ᾱλ,m)− log β̄λ,m) + Ψ(ᾱ

(k)
ζ,m,l)− log β̄

(k)
ζ,m,l

− (ᾱλ,m/β̄λ,m)D − (ᾱ
(k)
ζ,m,l/β̄

(k)
ζ,m,l)|F0,m,l|2

+Ψ(ᾱ(k)
v ) + Ψ(β̄(k)

v )− 2Ψ(ᾱ(k)
v + β̄(k)

v ), (60)

a = 2
∑

m,l
π̄
(k)
m,l

ᾱλ,m

β̄λ,m
Re

[(
µ̄(k)+j

ωm

c

)
F0,m,lf̃

∗
m,l

]
+ κ(k)ξ(k), (61)

B = 2
∑

m,l
π̄
(k)
m,l

ᾱλ,m

β̄λ,m
Re

[
F0,m,lf̃

H
m,l

]
ξ̄(k) + η(k)µ(k),

(62)

C = 2
∑

m,l
π̄
(k)
m,l

ᾱλ,m

β̄λ,m
|F0,m,l|2 + η(k), (63)

D = (µ̄(k)2 + η̄(k) + ω2
m/c2)|F0,m,l|2

− 2Re[(µ̄(k) + jωm/c)F0,m,lf̃
H
m,l]ξ̄

(k)+∥f̃m,l∥2, (64)

where Ψ(·) is the digamma function.
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