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Abstract—The direction-of-arrival (DOA) of acoustic sources
is an important parameter used in multichannel acoustic signal
processing to perform, e.g., source extraction. Deep learning-
based time-frequency masking has been widely used to make
DOA estimators signal-aware, i.e., to localize only the sources
of interest (SOIs) and disregard other sources. The mask is
applied to feature representations of the microphone signals.
DOA estimators can either be model-based or deep learning-
based, such that the combination with the deep learning-based
masking estimator can either be hybrid or fully data-driven.
Although fully data-driven systems can be trained end-to-end,
existing training losses for hybrid systems like weighted steered-
response power require ground-truth microphone signals, i.e.,
signals containing only the SOIs. In this work, we propose a loss
function that enables training hybrid DOA estimation systems
end-to-end using the noisy microphone signals and the ground-
truth DOAs of the SOIs, and hence does not dependent on the
ground-truth signals. We show that weighted steered-response
power trained using the proposed loss performs on par with
weighted steered-response power trained using an existing loss
that depends on the ground-truth microphone signals. End-to-end
training yields consistent performance irrespective of the explicit
application of phase transform weighting.

Index Terms—Direction-of-Arrival, Steered-Response Power,
Deep Learning, Time-Frequency Masking, End-to-End

I. INTRODUCTION

In an acoustic environment, multiple sound sources can
be simultaneously active. Consider, e.g., a scenario where a
desired speaker and undesired directional sound are captured
using a microphone array. To perform multichannel speech
enhancement (SE) or steer a camera towards the desired
speaker, the direction-of-arrival (DOA) of the source of interest
(SOI) with respect to the microphone array could be used.
Reverberation, noise, and interference render estimating the
DOA challenging. The task of estimating the DOAs of the
SOIs is commonly referred to as signal-aware DOA estimation.

DOA estimation is a well studied subject [1]–[3]. Signal
processing methods are usually based on time differences of
arrival between the microphone signals of an array, which
depend on the DOAs. As natural sounds typically exhibit
structure in frequency, a frequency transform, e.g., the short-
time Fourier transform (STFT), is usually applied to the micro-
phone signals. The time differences of arrival translate to phase
differences per time-frequency (TF) bin. Consequently, DOA
estimation can be performed “narrowband” or “broadband”,
i.e., based on single or all frequency bands, respectively. Signal
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processing methods for DOA estimation can rely on i) inter-
microphone cross-correlations [4], [5], where the dependency
between the DOAs and the phase difference is directly ex-
ploited, ii) beamformers [6]–[9], where spatial sampling is
performed, and the DOAs are obtained by peak-picking, or iii)
signal or noise subspaces [9]–[14] that are constructed from
the power spectral density matrix.

Progress in deep learning has enabled DOA estimation
also in more adverse and challenging scenarios. Commonly, a
feature representation in the STFT domain is fed into a deep
neural network (DNN) where the objective is to i) estimate
the DOA directly [15]–[20] by mapping the features to a
representation of the DOAs, or ii) aid a further DNN or a signal
processing method that estimates the DOA by masking the fea-
tures [20]–[24] or weighting the averaging of the narrowband
DOA estimates [25], [26]. Including DNNs can robustify an
estimator against reverberation and noise or make it signal-
aware [23], [24]. Estimation systems can be fully data-driven
or hybrid, i.e., consist solely of DNNs, or of DNNs and signal
processing methods, respectively. Hybrid systems were found
to be more flexible at lower computational complexity and
comparable performance [24]. We focus on hybrid systems
where the masking introduces signal-awareness.

When combining the masking and the DOA estimators,
training (if applicable) can be performed separately or jointly.
Possible training objectives are i) SE objectives, e.g., a phase-
sensitive mask (PSM) [23], ii) objectives based on the spatial
pseudo-spectrum (SPS) [24], or iii) end-to-end objectives
[27], [28]. The former two require the ground-truth (GT)
microphone signals, i.e., signals containing only the SOIs,
the latter only the GT DOA. As only the GT DOA may
be available in real-world scenarios, end-to-end training is a
desirable option. To the best of the authors’ knowledge, there
are no end-to-end training strategies for hybrid signal-aware
DOA estimation (HYSADE) systems. This work proposes an
interpretable loss function for end-to-end training of HYSADE
systems. Here, we demonstrate the applicability of this loss
function for deep learning-based weighted steered-response
power with phase transform (SRP-PHAT). We show that the
estimation performance is comparable to a state-of-the-art
method that requires the GT signals.

II. BACKGROUND

In this section, we formalize HYSADE, describe the signal
model, and review TF masks from [23], [24], which are later
used as baselines.
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A. Problem Formulation
We assume a uniform linear array with Q microphones1

in a reverberant room. The sound field comprises S direc-
tional sound sources with index s ∈ S = {1, 2, . . . , S}, where
I ⊆ S is the set of SOIs. The objective is to localize the
SOIs. The STFTs of the microphone signals are denoted as
Y ∈ CK×N×Q, where K and N denote the total number
of frequency bands and time frames, respectively. The set
of complex numbers is represented by C. The microphone
signals consist of an additive superposition of the direct and
reverberant sound components of the individual sources, Xdir

s

and Xrev
s , respectively, and microphone self-noise V , i.e.,

Y =

S∑
s=1

(
Xdir

s +Xrev
s

)
+ V. (1)

Using the SRP method [8], the DOAs can be estimated from
Y via spatial sampling in C directions (i.e., DOA candidates),
power computation (yielding the SPS), and peak-picking; the
estimated DOAs are the angles corresponding to the chosen
peaks.

It has been shown that applying a frequency-dependent
weighting to Y can significantly improve the DOA estimation
when using the SRP method [8]. We consider different real-
valued weights M ∈ RK×N×Q,

Ỹ = M ⊙ Y, (2)

where ⊙ denotes element-wise multiplication. The set of real
numbers is represented by R. A weighting known to robustify
SRP against adverse acoustic conditions [1], [8] is PHAT
weighting, i.e., magnitude normalization of the signals,

WPHAT = 1K×N×Q ⊘
(
|Y |+ ρ 1K×N×Q

)
, (3)

where 1K×N×Q is an all-ones matrix of dimension
K ×N ×Q, ⊘ denotes element-wise division, |·| denotes
the element-wise absolute value, and ρ ∈ R+ is a small
regularization constant.

The weighting can also be devised to only respond to certain
source signals, e.g., the SOIs. If the sources in I are to be
localized, the information contained in Xdir

SOIs =
∑

i∈I Xdir
i

can be exploited as it contains the direct-path sound from the
sources to the array. In an anechoic mixture of speech signals,
each TF bin can be assumed to be dominated by a single
source [29]. This property is violated, e.g., in the presence
of reverberation and broadband sources. To focus on the TF
bins supporting the DOA estimates of the sources in I, we
additionally apply a TF mask MI ∈ [0, 1]K×N×Q to the
microphone signals Y . In general, the weighting in (2) is a
concatenation of all employed individual weightings, i.e.,

M = WPHAT ⊙MI . (4)

Finally, the SRPs are computed from Ỹ after (2). Note that
WPHAT is always channel dependent, whereas MI can also
be devised to be channel independent, cf. Section IV-B.

1Linear arrays sample sound fields along a line in three-dimensional space.
As the beam pattern is rotationally symmetric, only DOAs in a half-plane can
be distinguished and are identified with the azimuth angle ϑ ∈ [0, π].

B. Baseline Methods

HYSADE systems have been realized using different acous-
tic signal processing methods, e.g., multiple signal classifica-
tion [30] and SRP [22], [23]. Hereinafter, we briefly review
the training strategies as adopted in [23], [24].

In [23], the authors propose to leverage a SE mask, the PSM,
for the objective of DOA estimation with SRP. The mask is es-
timated by a DNN trained separately from the DOA estimation
task to minimize the mean squared error (MSE) between the
network output and the oracle PSM extracting Xdir

SOIs from the
microphone signals. In [24], the MSE between the reference
SPS based on Xdir

SOIs and the respective SPS based on Ỹ is
used as an optimization criterion. Training of the DNN that
computes the mask is performed implicitly within the DOA
estimation framework. The localization performances using
SRP and either one of the two previously introduced masks
were found to be comparable for the task of localizing a talker
in the presence of a non-speech interferer and microphone self-
noise [24]. As the PSM enables simultaneous SE and accurate
localization, it is used as a baseline in this paper.

The training strategies in [23], [24] require Xdir
SOIs. As DNNs

adapt to their training data, learning from measurements is
highly desirable as it is likely to improve the performance over
training with simulated data. In particular, when considering
measured data, the GT microphone signals are unobservable
while the GT DOA can be obtained using, e.g., an optical
tracking system [31]. Consequently, a loss function that only
requires the GT DOA as training reference is highly desirable.
In [24], [27], [28], objectives for purely data-driven signal-
aware DOA estimation are proposed that do not require the
GT signals. To the best of the authors’ knowledge, no such
training strategy for HYSADE systems has been proposed yet.

III. PROPOSED TRAINING STRATEGY

We propose the power minimization loss (PML), a solely
DOA-based loss for HYSADE systems, to train the mask-
estimation DNN. Hereinafter, we restrict ourselves to the case
of a single SOI. The PML is based on two components, i) the
SPS obtained from Ỹ for time frame n ∈ {1, 2, . . . , N} and
DOA candidate c ∈ {1, 2, . . . , C}, denoted by SPS(Ỹ )[c, n],
and ii) a mapping function f : RC 7→ R. The time-
averaged SPS is normalized using the time-averaged SPS value
associated with the DOA of the SOI, cSOI, and then processed
by f , i.e.,

PML = f

 ∑N
n=1 SPS

(
Ỹ
)
[c, n]∑N

n=1 SPS
(
Ỹ
)
[cSOI, n]

 . (5)

In this work, we use the arithmetic mean over c as the
mapping function. By minimizing the mean normalized SPS,
the loss function mimics the minimum power distortionless
response beamformer objective, i.e., minimizing the overall
output power while retaining it from one direction. As the
normalization guarantees unity of the SPS in the desired
direction, training cannot yield an all-zero mask.
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TABLE I
PARAMETERS OF THE RIRS FOR THE THREE DATA SETS. (FROM [24].)

Training Validation Test [37]

T60 [s] {.2, .3, .4, .6, .8} {.45, .6, .75} {.16, .36, .61}
SMD [m] {1, 2} {1.2, 2.3} {1, 2}
ϑ [◦] {0, 5, . . . , 180} {0, 5, . . . , 180} {0, 15, . . . , 180}

# files 11.1 · 104 1.3 · 104 1560

IV. EXPERIMENTAL SETUP

This section briefly describes the generation of the required
data sets and elaborates on the model details.

A. Data Sets
We generated training, validation, and test sets comprising

signals with a duration of 1.6 s, a sampling frequency of
16 kHz, S = 2 sources, and spatiotemporally white noise
for a uniform linear array with Q = 4 microphones and
8 cm inter-microphone distance. The (single) SOI is always
a speech source from LibriSpeech [32], and the undesired
source is a non-speech interference from FSDnoisy18k [33],
[34]. Reverberation was simulated by convolving the sources
with room impulse responses (RIRs) of different reverber-
ation times T60 and of different source microphone-center
distances (SMDs). For training and validation, RIRs were
simulated using the image method [35], [36], whereas mea-
sured RIRs [37] were used for the test (RIRs of the cen-
tral four microphones of the 8 cm configuration). All RIR
parameters are summarized in Table I and correspond to
rooms with sizes in meters ([length,width, height]) as fol-
lows: {[6, 6, 2.7], [5, 4, 2.7], [10, 6, 2.7], [8, 3, 2.7], [8, 5, 2.7]}
for training, {[9, 11, 2.7], [10, 10, 2.7], [9, 5, 2.7]} for valida-
tion, {[6, 6, 2.4]} for testing. Note that the angular separation
of both sources was larger than 10◦. We steered SRP into
C = 37 directions, resulting in an angular resolution of
5◦. The angular resolution should be determined depending
on the employed array architecture and the expected SMD.
We simulated signal-to-interference ratios (SIRs) in the range
[−6, 6] dB and signal-to-noise ratios in the range [20, 30] dB.
All signals were transformed into the STFT-domain with a
window length of 32ms and a hop size of 16ms, yielding
K = 257 frequency bands and N = 100 time frames.

B. Models
The considered weighted SRP method combines traditional

DOA estimation and deep learning-based mask estimation.
We adapted the DNN from [24] as the mask estimator and
trained it with the baseline [23] as well as the proposed loss
functions. The DNN consists of two long short-term memory
layers (hidden dim. = 512) followed by a feed-forward layer
with sigmoid activation to ensure mask values in the range
[0, 1]. The input of the DNN per time frame is the magnitude
STFT of one microphone, and the output per time frame is a
mask of output dim. = input dim. = K = 257. This mask is
then applied to all microphones. This choice was motivated by
[24], where no performance difference between using a single
PSM applied to all microphones or using multiple (channel-
dependent) PSMs was observed.

V. PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance
of the proposed end-to-end PML training with the baseline
MSE training yielding a PSM [23] for the objective of signal-
aware DOA estimation using weighted SRP2. One instance
of the DNN was trained with the baseline objective, as it
is independent of the DOA estimation. Two instances of the
DNN were trained with the proposed end-to-end objective,
as it depends on the DOA estimation, and the training and
outcome might be influenced by including PHAT weighting.

A. Performance Metrics

We use two measures [23], [24], [28] to assess the perfor-
mance of the methods, whereby all DOA estimates correspond
to the maximum of the time-averaged SPS. The mean absolute
error (MAE) for a method is given in degrees,

MAE =
1

F
·
∑
f

(
|ϑf − ϑ̂f |

)
, (6)

where F is the total number of files in the data set,
f ∈ {1, 2, . . . , F} is the file index, ϑf is the true DOA of the
SOI in file f , and ϑ̂f is the corresponding estimate. Let F (deg)

denote the number of files where the absolute error (AE) fulfils
AE ∈ [0◦, deg◦). The accuracy, i.e., the detection rate for an
admissible AE ∈ [0◦, deg◦) (deg-ACC), is given in percent,

deg-ACC =
F (deg)

F
· 100%. (7)

Using C = 37 DOA candidates, the 5-ACC states how often
the correct DOA candidate is detected, i.e., how often the
AE is below 5 degrees. The 10-ACC states how often the
correct DOA candidate or one of its neighboring candidates is
detected, i.e., how often the AE is lower than 10 degrees.

B. Performance Analysis

All results are summarized in Table II and are broken down
gradually; illustrations of SPSs and masks resulting from the
baseline [23] as well as the proposed training can be found in
Figures 1 and 2, respectively. The reported performance refers
to the test set as described in Section IV-A.

Without masking, the localization of the speech source
succeeded only poorly with an MAE of about 40 degrees,
irrespective of the application of PHAT weighting. Note that
a clear improvement in the deg-ACCs can be observed by
including PHAT weighting (e.g., PHAT weighting improved
the 5-ACC by 16 %). At constant MAE, this corresponds to
sharper peaks of the SPS, as shown in Figure 1 for some
typical SPSs (the estimates in the bottom row with PHAT are
peakier than those in the top row without PHAT). The low
accuracy and the high MAE without masking are expected, as
we always selected the highest peak of the SPS to correspond
to the estimated DOA of the SOI. Without masking, the

2Note that typical end-to-end loss functions like the categorical cross-
entropy cannot be employed for weighted SRP due to the broad lobes of the
SPS; the loss cannot be effectively minimized in the vicinity of the desired
DOA. We reimplemented a standard version of SRP [8], [38] in PyTorch to
enable backpropagation of the gradients over SRP.
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SPS is expected to have two peaks corresponding to the two
directional sources; picking the highest peak can be thought
of as localizing either of the two present sources. Assuming
that masking improves the performance of localizing the SOI,
this result constitutes a lower bound on the performance for
our experiments.

For the considered scenario, the inclusion of either signal-
aware mask substantially improved the performance. Employ-
ing PHAT weighting and the baseline masking [23] achieved
the top performance in our experiments, improving the results
by 33 degrees in MAE, 31% in 5-ACC, and 38% in 10-
ACC, with respect to no masking. The proposed method
combined with PHAT weighting performed comparably, i.e.,
only 1 degree worse in MAE, 2% in 5-ACC, and 1% in 10-
ACC. Training without the GT signals is also successfully
possible for HYSADE systems, and the proposed end-to-end
loss function yields state-of-the-art performance. Observe how
the application of either mask lead to a successful localization
of the SOI instead of the interferer in Figure 1.

In Figure 1, the SPSs based on Ỹ resemble the SPSs based
on Xdir

SOIs for the cases “PSM excl. PHAT”, “PSM incl. PHAT”,
and “End-to-End Mask incl. PHAT”. Interestingly, for the
case “End-to-End Mask excl. PHAT”, the SPS based on Ỹ is
peakier than the SPS based on Xdir

SOIs, even though no channel-
dependent weighting was included. It is comparable to the SPS
based on Ỹ for the case “End-to-End Mask incl. PHAT”. This
observation is generally reflected in comparable performance
with and without PHAT weighting for the proposed training
method. We hypothesize that the proposed end-to-end loss
enabled the DNN to learn the necessary normalization.

Lastly, we illustrate log10(SIR) and typical TF masks, i.e.,
log10(MI), as output by the DNN in Figure 2. Note that
the input to the DNN was the magnitude STFT of the noisy
microphone signals |Y | and that the PSM remains unchanged
irrespective of the inclusion of PHAT weighting. Within the
PSM, the magnitude structure of speech in the TF domain can
be observed as it is an SE mask. This structure is not present
in the end-to-end masks; however, comparable onsets in time
can be observed in the PSM and the end-to-end masks. The
end-to-end masks cannot be used for SE purposes3. In the
lower frequency bands with a lot of speech energy, the end-
to-end masks are generally sparser. This finding can be ex-
plained by the broader beamformer lobes for low frequencies,
which provide little additional information for accurate DOA
estimation. The end-to-end training was able to adapt to that
property. Other than a slight sparsification by the inclusion of
PHAT weighting, the structure of the two end-to-end masks
is similar. Note that the end-to-end masks put less emphasis
on the low-SIR regions, whereas the PSM also extracts the
low-SIR TF bins corresponding to the SOI.

VI. CONCLUSION

We proposed the PML, an end-to-end training objective
for deep learning-based weighted SRP as an example of an

3For a demonstration, please visit https://www.audiolabs-erlangen.de/
resources/2022-EUSIPCO-HYSADE.

TABLE II
RESULTS USING THE BASELINE TRAINING FROM [23] AND THE PROPOSED
END-TO-END TRAINING, EVALUATED ON THE TEST SET AS DESCRIBED IN

SECTION IV-A. THE BEST RESULTS ARE PRINTED IN BOLD FACE.

SRP No PHAT PHAT
MAE 5-ACC 10-ACC MAE 5-ACC 10-ACC

No Masking 39.9◦ 20% 33% 39.8◦ 36% 43%
Baseline [23] 12.0◦ 30% 58% 6.8◦ 67% 81%

Proposed 8.1◦ 64% 79% 7.8◦ 65% 80%
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Fig. 1. Illustration of the normalized SPSs incl./excl. PHAT weighting and
using the two training objectives for the DNN, the baseline objective after
[23] (left column) and the proposed objective (right column). Observe how
PHAT weighting improved the localization of the SOI (at ϑ = 60◦), while
disregarding the interferer (at ϑ = 90◦) only for the baseline training.
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Fig. 2. Illustration of log10(SIR) and the TF masks (log10(MI)) corre-
sponding to the SPSs in Figure 1, estimated from |Y |. The PSM is identical
regardless of the application of PHAT as the accompanying DNN training is
performed separately from the DOA estimation, whereas the two end-to-end
masks depend on the incl./excl. of the PHAT weighting during training.

44



HYSADE system. As opposed to existing training strategies
for HYSADE systems requiring microphone signals contain-
ing only the SOI, the proposed PML only requires the GT
DOA as training reference, which can be obtained using, e.g.,
an optical tracking system. Using a test set generated using
measured RIRs, we showed that the proposed method achieves
state-of-the-art performance, exemplified by the objective of
localizing a speech source in the presence of a directional
non-speech interferer and spatiotemporally white noise. This
finding holds without the use of (channel-dependent) PHAT
weighting. Future work involves testing the PML with i) mul-
tiple SOIs where a suitable strategy for the choice of the
normalizing must be devised (e.g., using the lowest SPS value
associated with the SOIs) and ii) different mapping functions.
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