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Abstract—In this paper, we propose a new and flexible method
for designing a constant-beamwidth beamformer that maintains
directional constraints. We decompose the problem by designing
a linearly constrained minimum variance beamformer and a
constant-beamwidth beamformer based on the window technique.
Subsequently, we utilize Kronecker product beamforming to
merge the two elementary beamformers. While a competing
method restricts the beamwidth depending on the interelement
spacing and number of sensors in the array, the proposed
method enables a flexible design of an arbitrary beamwidth.
Experimental results demonstrate the improved performance of
the proposed approach compared to the competing method.
Specifically, the proposed beamformer achieves the desired
beamwidth and directional constraints with a significantly higher
directivity factor and lower sidelobe levels.

Index Terms—Linearly constrained minimum variance
(LCMV) beamformer, broadband beamformer, constant-
beamwidth beamformer, Kronecker product, microphone array.

I. INTRODUCTION

Broadband beamforming is useful in various fields, includ-
ing audio, communication, and radar [1]–[3]. A frequency-
invariant beampattern avoids signal distortion when the beam-
pattern is not steered to the precise direction of the desired
source. Blocking of directional interferences can be generally
accomplished by designing the beampattern with nulls directed
toward the interfering sources. Over the past few decades,
constant-beamwidth beamforming has attracted much attention
[4]–[7].Long et al. [8] introduced the window technique,
where the window parameters are tuned per frequency to
maintain a constant beamwidth. Their technique achieves high
white noise gains (WNG) and directivity factors (DF) without
sacrificing computational efficiency.

The linearly constrained minimum variance (LCMV) beam-
former [9], [10] minimizes the variance of the beamformer
output while maintaining directional constraints. A drawback
of the LCMV beamformer is the need to invert a large and
sometimes ill-conditioned covariance matrix. Wolff et al. [11]
address this drawback by recursively computing the LCMV
beamformer’s weights (a smaller matrix is inverted at each
stage). The generalized sidelobe canceller (GSC) [12] elim-
inates the need for matrix inversion by iteratively producing
a beamformer that is equivalent to the LCMV beamformer
[13]. The GSC consists of two beamformers that operate on
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orthogonal subspaces. One beamformer ensures that the linear
constraints are satisfied while the other adaptively filters out
the remaining noise. Currently, LCMV beamformers lack a
straightforward method for achieving a constant beamwidth,
and the constant-beamwidth beamformer proposed by Long et
al. [8] fails to incorporate directional constraints.

Koh and Weiss [14] proposed modifying the linear con-
straints of the GSC, in addition to harmonic nesting and spatial
tapering [15], to attain a constant beamwidth. Unfortunately,
their method is limited in that the beamwidth is fixed at a
value that depends on the number of sensors in the array and
the spacing between them. The interelement spacing is set to
half of the highest wavelength and is not adjusted to control
the beamwidth. Moreover, the interferers’ directions and noise
affect the beamwidth due to the beamformer operating on the
noise subspace.

This paper introduces a new and flexible method for design-
ing a constant-beamwidth LCMV beamformer. We separately
design a constant-beamwidth beamformer using the window
technique and an LCMV beamformer that satisfies the direc-
tional constraints. Then we merge the two beamformers using
generalized Kronecker product beamforming [16] to produce
a constant-beamwidth LCMV beamformer. Compared to Koh
and Weiss’s beamformer [14], the proposed beamformer can
be configured to have an arbitrary beamwidth and has superior
DF and sidelobe levels but has marginally lower WNG.

II. SIGNAL MODEL AND BACKGROUND

Consider a uniform linear array (ULA) with M omnidirec-
tional sensors and interelement spacing of δ. We assume a
far-field scenario in an anechoic environment: a plane wave
arrives from the azimuth angle θ, 0◦ ≤ θ ≤ 180◦, and
propagates at the speed of sound in the air, c = 343 m/s.
Using vector notation in the frequency domain, the measured
signal at frequency f is given by

y(f) = d(f, θd)X(f) + v(f) , (1)

where X(f) is the desired signal arriving from the direction
θd, v(f) is the additive noise vector of length M , and d(f, θ)
is the steering vector of length M given by

d(f, θ) =
[
1 e−ȷu e−ȷ2u . . . e−ȷ(M−1)u

]T
, (2)

where u = 2πf
c δ cos(θ), ȷ =

√
−1, and T denotes transpose.
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Beamforming is performed by applying a linear spatial filter
to the measured signal vector:

Z (f) = hH (f)y (f) , (3)

where Z (f) is the beamformer’s output, h (f) is the beam-
forming weight vector of length M , and H denotes conjugate
transpose. The distortionless constraint,

hH(f)d(f, θd) = 1 , (4)

normalizes the beamformer’s weights to attain a frequency-
invariant gain toward the direction θd. The beampattern is
defined as the beamformer’s response to a plane wave arriving
from the direction θ:

B [f, θ,h(f)] = dH(f, θ)h(f) . (5)

The first null beamwidth (FNBW), b(f), is the difference
between the angles nearest to the mainlobe at which the value
of the beampattern equals zero. With constant-beamwidth
beamforming, the FNBW does not vary with frequency, i.e.,
b(f) ≡ θB, where θB denotes the desired FNBW. The sidelobe
level is defined as the beampattern’s maximum value over
directions outside the mainlobe.

In this work, we steer the beamformer to the broadside
direction, i.e., θd = 90◦. We omit the variable f from now
onward for conciseness.

A. LCMV Beamformer
Assuming that the desired signal and additive noise are

statistically independent, the variance of Z is given by

ϕZ = ϕX

∣∣hHd (θd)
∣∣2 + hHΦvh , (6)

where ϕX is the variance of X and Φv is the covariance matrix
of v. The LCMV beamformer minimizes the noise component
of (6) under NC linear constraints:

h1 = argmin
h

hHΦvh s.t. CHh = q , (7)

where C is a constraint matrix of size M × NC and q is a
vector of length NC. The solution to (7) is given by:

h1 = Φv
−1C

(
CHΦv

−1C
)−1

q , (8)

which requires inverting an M × M covariance matrix Φv,
which may sometimes be ill-conditioned.

We provide an example to demonstrate properties of the
LCMV beamformer for a ULA with M = 13 sensors and in-
terelement spacing δ = 3.2 cm in the presence of white noise,
i.e., Φv = IM , where IM is the M ×M identity matrix. The
matrix C includes null constraints for θ1 = 60◦ and θ2 = 130◦

and distortionless constraint (4) for θd = 90◦. The resulting
LCMV beamformer is illustrated in Fig. 1(a). The LCMV
beamformer exhibits high sidelobe levels at all frequencies
(≈ −13 dB), and its FNBW is frequency-dependent (becomes
narrower as the frequency increases). It is generally impossible
to make the FNBW constant by adding constraints on the
beampattern’s amplitude. For example, naively adding two
null constraints toward directions θd ± θB

2 does not achieve a
constant FNBW of θB = 36◦ because other nulls fall between
the added nulls, as seen in Fig. 1(b).
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Fig. 1. LCMV beampatterns for M = 13, δ = 3.2 cm, θd = 90◦, and
null constraints toward directions θ1 = 60◦ and θ2 = 130◦. In the lower
plot, there are additional two null constraints toward directions θd ± θB

2
for

a desired FNBW of θB = 36◦.

B. Constant-Beamwidth Beamformer

Long et al. [8] introduced a window-based technique to
attain the beamwidth constancy. The main idea was to apply
different shapes of windows for different frequency bins as real
weighting coefficients of microphones. The beamwidth was
maintained constant by controlling the window parameters.
For example, we can use the Kaiser window [17],

w [m] =

I0

[
β

√
1−

(
2m

M−1 − 1
)2]

I0 [β]
, 0 ≤ m ≤ M −1 , (9)

which is easy to compute and gives near-optimal sidelobe
attenuation for a given mainlobe width. Here, I0 (x) is the
zero-order modified Bessel function of the first kind, and
β is the window shape factor, which represents the tunable
parameter. Per frequency, the value of β is modified so that
b(f) ≡ θB. To satisfy (4) for θd = 90◦, the beamformer
weights are further normalized:

h [m] =
w [m]∑M−1

m′=0 w [m′]
, 0 ≤ m ≤ M − 1 , (10)

where h [m] denotes the mth element of h.

C. Kronecker Product Beamformer

Kronecker Product beamforming [18] is a flexible, simple,
and robust technique for designing beamformers. The main
idea is to decompose the physical array into subarrays, and
design or optimize the subarrays separately.

Consider a ULA with M = M1M2 sensors and interelement
spacing δ. This array is termed the physical array. The physical
array’s steering vector and beamforming weight vector, of
lengths M , are denoted by d(θ) and h. Assume that we
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decompose the physical array into two subarrays of sizes M1

and M2, such that

d(θ) = d1(θ)⊗ d2(θ) , (11)

where d1(θ) denotes a steering vector of size M1 for the first
subarray, d2(θ) denotes a steering vector of size M2 for the
second subarray, and ⊗ is the Kronecker product. Then, we
can design beamformers h1 and h2 for the subarrays, and
apply the beamformer

h = h1 ⊗ h2 (12)

to the physical array. As a result, the beampatterns of the
subarrays, B(θ,hi) = di

H(θ)hi, i ∈ {1, 2}, are related to the
beampattern of the physical array by a multiplication [18]:

B(θ,h) = dH(θ)h

= [d1(θ)⊗ d2(θ)]
H
(h1 ⊗ h2)

=
[
d1

H(θ)h1

] [
d2

H(θ)h2

]
= B(θ,h1)B(θ,h2) .

(13)

III. CONSTANT-BEAMWIDTH LCMV BEAMFORMER

In this section, we propose a novel method for designing
a constant-beamwidth LCMV beamformer by separately de-
signing LCMV and constant-beamwidth beamformers for two
subarrays, and then joining them together with the Kronecker
product beamforming method.

A. Physical Array Beampattern

Assume that NI interferers impinge on the array from
directions θi, 1 ≤ i ≤ NI, outside of the desired mainlobe:
|θi − θd| > θB

2 , 1 ≤ i ≤ NI. Our goal is to design a
beampattern with nulls in the interferers’ directions while
maintaining the distortionless constraint (4) and a constant
FNBW of θB. Our design is for a ULA with M sensors and
interelement spacing δ, but can be generalized to other array
geometries. Using the terminology introduced in the previous
section, this array is termed the physical array. We construct
two subarrays of sizes M1 and M2, with interelement spacing
δ, such that M1+M2−1 = M (̸= M1M2). For this choice of
subarrays, (11) does not hold. Examine the following steering
vector of length M1M2:

d(θ) = d1(θ)⊗ d2(θ) [̸= d(θ)] . (14)

The array that corresponds to this steering vector is termed
the virtual array. We design beamformers h1 and h2 for the
subarrays, and apply the beamformer

h = h1 ⊗ h2 (15)

to the virtual array. Similar to (13), the beampatterns of the
subarrays are related to the beampattern of the virtual array,
B(θ,h) = d

H
(θ)h, by a multiplication [16]:

B(θ,h) = B(θ,h1)B(θ,h2) . (16)

Notice that the virtual array’s steering vector contains the
same values as the physical array’s steering vector but in

a different order and with some repetitions. They contain
the same values because we set the subarrays’ interelement
spacing to δ and M1 + M2 − 1 = M . Denote by σ the
permutation of the steering vectors, i.e., σ [d(θ)] = d(θ).
Therefore, the virtual array’s beampattern is equivalent to
σ [d(θ)]

H
h. Generalized Kronecker product beamforming [16]

is performed by applying the virtual array’s beamforming
weight vector to the permutation of the physical array’s
measured signal vector:

Z = h
H
σ (y) , (17)

which produces the same beampattern as the virtual array.
We show an alternative procedure for achieving the same

beampattern. Instead of rearranging (with repetitions) the
outputs of the physical ULA’s sensors and then multiplying
them with the virtual array’s beamforming weights (17),
we calculate an equivalent weight for each physical sensor.
Formally, we seek for h that satisfies:

∀θ ∈ [0◦, 180◦] : d
H
(θ)h = dH(θ)h . (18)

Proposition. A solution to (18) is the linear convolution of
the two subarrays’ weights:

h[m] =

k2(m)∑
k=k1(m)

h1[k]h2[m− k] , 0 ≤ m ≤ M − 1 ,

(19)
where k1(m) = max(0, m + 1 − M2) and k2(m) =
min(m, M1 − 1).

Proof.

d
H
(θ)h =

[
d1

H(θ)h1

] [
d2

H(θ)h2

]
=

(
M1−1∑
i=0

h1[i]x
i

)M2−1∑
j=0

h2[j]x
j


=

M1+M2−2∑
m=0

k2(m)∑
k=k1(m)

h1[k]h2[m− k]xm

=

M−1∑
m=0

h[m]eȷmu

= dH(θ)h ,

(20)

where x
.
= eȷu and the third equality follows from the Cauchy

product of two polynomials. ■

Next, we design the virtual array’s beampattern. Once the
beamformers of the subarrays, h1 and h2, are obtained,
the beamformer of the physical array is obtained by (19).
As a result, the virtual and physical arrays have the same
beampatterns.

B. Virtual Array Beampattern

We can deduce from (16) that for directions in which one
of the subarrays’ beampatterns has a null, the virtual array’s
beampattern also has a null. Furthermore, designing both
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subarrays to maintain (4), the virtual array would also maintain
the distortionless constraint. For θ ̸= θd, the subarrays’
beampattern’s amplitudes should be less than 1. Therefore,
for θ ̸= θd, the virtual array’s beampattern’s amplitude is less
than each subarray’s beampattern’s amplitude. In other words,
the sidelobe level of the virtual array is better than that of
each subarray. Therefore, it is sufficient to design one subarray
with high sidelobe attenuation. This is achieved by designing
a subarray using the window technique. The other subarray
is designed to have nulls in the interferers’ directions and no
nulls in the mainlobe.

To manage the interferers, consider a ULA with M1 sensors
and interelement spacing δ. This array is termed the LCMV
subarray. To maintain the distortionless constraint (4) and
block the interferers, we have NC = NI +1 constraints given
by

CHh1 = q , (21)

where

C =
[
d1 (θd) d1 (θ1) d1 (θ2) . . . d1 (θNI)

]
(22)

and
q =

[
1 0 0 . . . 0

]T
. (23)

Here, the dimensions of C are M1 × NC. To fulfill these
directional constraints, an array of at least NC sensors is
required. We do not use more sensors so that the LCMV
subarray’s beampattern does not have nulls besides those at
the interferers’ directions. Otherwise, a null might be produced
in the mainlobe. Additional benefits of limiting the number of
sensors are providing more sensors to the second subarray
(improving the sidelobe levels) and inverting a smaller covari-
ance matrix to attain the subarray’s weights. Therefore, we set
M1 = NC.

The LCMV subarray’s beamforming weights are given by
(8) (substituting (22) for C, (23) for q, and the subarray’s
noise covariance matrix of size M1 ×M1 is taken as the first
M1 rows and columns of Φv) producing the beampattern:
B(θ,h1) = d1

H(θ)h1, with values:

B(θ,h1) =

{
1 , θ = θd ,

0 , θ ∈ {θi}NI
i=1 .

(24)

Next, we design a constant-beamwidth beamformer with
an FNBW of θB for a ULA with M2 = M − M1 + 1
sensors and interelement spacing δ following the window
technique outlined in Section II-B (replacing M with M2 in
(9) and (10)). This array is termed the CBW subarray. The
designed beampattern is given by B(θ,h2) = d2

H(θ)h2. By
the constant-beamwidth design:

B(θ,h2) =

{
1 , θ = θd ,

0 , θ = θd ± θB
2 .

(25)

The virtual array is subsequently produced from the two
subarrays. It follows from (16), (24), and (25) that the virtual
array’s beampattern fulfills all design goals: a constant FNBW
of θB, distortionless constraint for θd, and nulls toward the NI

interferers. The physical array’s beamformer is obtained as a

linear convolution of the two subarrays’ beamformers using
(19), producing a beampattern identical to that of the virtual
array. Our design offers a tradeoff between the beamwidth and
sidelobe levels. Increasing the FNBW specification improves
the sidelobe levels since we use the Kaiser window for the
CBW subarray’s weights. Furthermore, the LCMV subarray’s
weights are produced by inverting a smaller M1×M1 covari-
ance matrix compared to an M ×M matrix.

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed beamformer to
Koh and Weiss’s [14] for a ULA with M = 13 sensors
in the presence of white noise, i.e., Φv = IM . The design
requirements were to maintain an FNBW of θB = 36◦

over the frequency octave [4, 8] kHz while maintaining the
distortionless constraint and nulling interferers from NI = 2
directions: θ1 = 60◦ and θ2 = 130◦. The design can be
extended to multiple octaves by using harmonic nesting [15].

For our proposed method, M1 = NC = 3 and an in-
terelement spacing of 3.2 cm was used. To reproduce Koh
and Weiss [14], the interelement spacing was set to half of
the highest wavelength, i.e., 1

2
c

8000 ≈ 2.1 cm. The constant-
beamwidth GSC was reformulated as an LCMV by replacing
the distortionless constraint with

cHh = 1 , (26)

where c is the beamforming weight vector that produces
Koh and Weiss’s reference constant-beamwidth beampattern
(a periodic sinc). The weights were normalized by using (10)
to satisfy the distortionless constraint (4). For the comparison,
we set θB = 36◦ since Koh and Weiss’s technique does not
provide a means to control the beamwidth; their FNBW is
fixed at a value that depends on the number of sensors in
the array and on the interelement spacing (which is fixed
to half of the highest wavelength and is not meant to be
adjusted). For this example, their FNBW is approximately 36◦

– a consequence of their reference beampattern. We now show
that even when we design our beamformer to maintain the
exclusive FNBW of the competing method, ours outperforms.

The beampatterns using our method and [14] are illustrated
in Fig. 2. Both approaches achieve nulls at the interferers’
directions, and maintain the distortionless constraint. The
beamwidth is constant using the proposed method, but is ap-
proximately constant using the competing method. Notice that
the beampatterns are asymmetric because the two interferers’
directions are not symmetric with respect to the broadside axis.
The beamformers’ performance measures are displayed in
Fig. 3 as a function of frequency. The WNG and DF represent
the array gains in white and diffuse noise environments,
respectively [19]. The proposed beamformer achieves higher
DF and lower sidelobe levels than the competing method,
although the WNG is slightly lower. Our method maintains the
precise FNBW, unlike [14] where the interferers’ directions
influence their beamwidth. Our beamformer inherited these
positive traits from the CBW subarray while simultaneously
nulling the interferers due to the LCMV subarray.
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Fig. 2. Constant-beamwidth LCMV beampatterns for M = 13, θd = 90◦,
θB = 36◦, θ1 = 60◦, and θ2 = 130◦.
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Fig. 3. Performance measures as a function of frequency for the constant-
beamwidth LCMV beamformers for M = 13, θd = 90◦, θB = 36◦, θ1 =
60◦, and θ2 = 130◦.

V. CONCLUSIONS

We have proposed a method for designing a constant-
beamwidth beamformer that satisfies null constraints. Our
method decomposes the problem into two elementary ones
and merges them based on the generalized Kronecker prod-
uct beamforming. Our method offers flexible control over
the FNBW, unlike the competing method. Additionally, our
method achieves significant sidelobe attenuation, has a high
directivity factor, and is simple to implement. Harmonic nest-
ing, together with the proposed spatial tapering, can maintain
the constant beamwidth over multiple octaves. Future studies
could generalize the method to two- and three-dimensional
arrays and beam steering.
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