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Abstract—As the number of connected devices equipped with
multiple microphones increases, scientific interest in distributed
microphone array processing grows. Current beamforming meth-
ods heavily rely on estimating quantities related to array geom-
etry, which is extremely challenging in real, non-stationary envi-
ronments. Recent work on polynomial eigenvalue decomposition
(PEVD) has shown promising results for speech enhancement in
singular arrays without requiring the estimation of any array-
related parameter [1]. This work extends these results to the
realm of distributed microphone arrays, and further presents
a novel framework for speech enhancement in distributed mi-
crophone arrays using PEVD. The proposed approach is shown
to almost always outperform optimum beamformers located at
arrays closest to the desired speaker. Moreover, the proposed
approach exhibits very strong robustness to steering vector
errors.

Index Terms—distributed microphone arrays, speech enhance-
ment, polynomial matrix eigenvalue decomposition.

I. Introduction

Recent years have seen an increase in the number of devices
equipped with multiple microphones, from smartphones to
wearable devices to home assistants. Consequently, the topic
of distributed microphone array processing has grown in
popularity with applications ranging from teleconferencing,
room geometry estimation or enhanced hearing aids [2]–[5].
For speech enhancement, distributed arrays present several
advantages over conventional compact arrays. As individual
arrays, also referred to as nodes, are typically positioned
arbitrarily, distributed arrays offer a large spatial diversity and
better representation of the acoustic environment than single
arrays [2]. In some specific use-cases, such as for example
involving infirmity and geriatrics, distributed arrays may be
less intrusive or uncomfortable for users compared to close-
talking microphones or hearing aids [6], [7]. However, dis-
tributed array processing also introduces significant technical
challenges. The geometry of the array may be unknown and
non-stationary, both between nodes and within nodes in the
case of wearable devices. Additionally, different devices oper-
ate with different sampling rates, or experience clock offset and
skew [8]. Microphones in the network cannot be assumed to be
calibrated, such that they may experience different frequency-
dependent gains. Finally, there is often a limitation on the
available transmission bandwidth between devices. These chal-
lenges are especially significant for speech enhancement since
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processing techniques such as beamforming heavily rely on
having calibrated arrays with known geometries [9]. Standard
array processing cannot generally be employed directly with
distributed arrays, and alternative approaches must be found.

Typical distributed array signal processing methods may aim
to apply classical beamforming methods by first performing
gain equalisation and clock synchronisation between devices,
and then estimating the required parameters such as relative
transfer functions (RTF) [10] or noise covariance matrices
[11]–[13]. The parameter estimation can occur at each node
in a distributed manner or at a fusion centre [12]–[15].
Recent results show that, for low-rank multi-channel Wiener
filters (MWF), the parameters can be estimated directly from
uncalibrated microphone signals without loss of performance
[8]. The performance of speech enhancement methods is
limited whenever parameter estimation is inaccurate, which
itself depends on accurate selection of internal regularisation
parameters [13] and the performance of array synchronisation
algorithms. Moreover, classical beamforming techniques are
typically implemented in the frequency domain, processing
separate frequency bands independently with narrowband tech-
niques, without considering inter-band correlations [9].

Instead, multi-channel broadband processing methods based
on the polynomial eigenvalue decomposition (PEVD) have
been proposed [16]–[18]. Recently, PEVD-based speech en-
hancement methods were found to be effective for noise
reduction and dereverberation in single spherical arrays or
of arbitrary shapes [1], [19]. The approach does not rely
on array geometry or noise estimation, and instead performs
enhancement by strongly decorrelating the microphone signals
in space, time, and frequency using PEVD. Moreover, com-
pared to some classical speech enhancement methods such as
spectral subtraction, mask-based enhancement and the single-
channel Wiener filter, PEVD-based enhancement does not
introduce any distortion in the desired speech signal [1].

This paper extends the the work on PEVD-based speech
enhancement from single arrays [1] to distributed micro-
phone arrays and proposes a novel processing framework
for non-fully-connected networks. Sec. II introduces technical
background on classical beamforming and PEVD for speech
enhancement. Sec. III highlights the shortcomings of existing
methods and presents the approach proposed in this paper.
Secs. IV and V describe the design and results of simulations,
and Sec. VI draws conclusions on this work.
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II. Technical Background

A. Signal model

Given Q microphone arrays containing Mq microphones,
the noisy speech signal recorded at the mth microphone of the
qth array can be written in the time domain as

xq,m(n) = hT
q,ms0(n) + vq,m(n) , (1)

where n = 0, . . . ,N is the time index, hq,m is the acoustic
impulse response (AIR) between the desired source and the mth

microphone of the qth array, assumed stationary and modelled
as an FIR filter of order J, s0(n) = [s0(n), . . . , s0(n− J)]T is the
anechoic speech signal, vq,m(n) is additive noise, and [·]T is the
transpose operator. The noise signals are assumed to be zero-
mean, non-perfectly coherent with each other, and uncorrelated
with the source signal [20]. Stacking the microphone signals
at the qth array gives

xq(n) = HT
q s0(n) + vq(n) , (2)

where xq(n) = [xq,1(n), . . . , xq,Mq (n)]T with vq defined simi-
larly, and Hq = [hq,1, . . . ,hq,Mq ]. The noisy speech and noise
spatial covariance matrices are therefore written as [9]

Rxqxq = E[xq(n)xT
q (n)] Rvqvq = E[vq(n)vT

q (n)] . (3)

B. Beamforming

Beamforming is often performed in the STFT domain, such
that for weights w̌q(k, ℓ) = [w̌q,1(k, ℓ), . . . , w̌q,Mq (k, ℓ)]T the
beamformer output at the qth array is given by

y̌q(k, ℓ) = w̌H
q (k, ℓ)x̌q(k, ℓ) , (4)

where a(n) � ǎ(k, l) represents a STFT pair with k and ℓ
the frequency and time-frame indices, and [·]H the Hermitian
transpose. The well known delay-and-sum beamformer (DSB)
is then defined as [21]

w̌DSB
q (k, ℓ) =

ďq(k, ℓ)

ďH
q (k, ℓ)ďq(k, ℓ)

, (5)

where ďq(k, ℓ) = [ďq,1(k, ℓ), . . . , ďq,Mq (k, ℓ)]T is the steering
vector associated with the qth array [9]. Setting ďq(k, ℓ) =
ȟq(k), where ȟq(k) is the kth row of the DFT of Hq, results
in a filter-and-sum beamformer (FSB). Another widely used
beamformer is the minimum variance distortionless response
(MVDR) beamformer defined in [22] as

w̌MVDR
q (k, ℓ) =

Φ−1
v̌qv̌q

(k, ℓ)ďq(k, ℓ)

ďH
q (k, ℓ)Φ−1

v̌qv̌q
(k, ℓ)ďq(k, ℓ)

, (6)

where Φv̌qv̌q (k, ℓ) = E[v̌q(k, ℓ)v̌H
q (k, ℓ)] corresponds to (3) in

the STFT domain. By exploiting the noise covariance matrix,
the MVDR beamformer is able to adapt to changes in the
acoustic environment and is therefore referred to as an adaptive
beamformer. The adaptive estimation of the noise covariance
matrix is non-trivial and poor estimates lead to degraded
beamforming performance [9].

C. PEVD-based speech enhancement

By processing the signal in frequency bands independently
as in (4), classical beamforming methods ignore spectro-
temporal correlation across bands [1]. To overcome this issue,
the PEVD speech enhancement method in [1] exploits the
space-time correlation matrix defined as [16]

Rxx(τ) = E[x(n)xH(n − τ)], (7)

where x(n) = [xT
1 (n), . . . , xT

Q(n)]T is the concatenation of
microphone signals from all Q arrays and τ is a temporal
lag. Note that the spatial correlation matrix in (3) is a special
case of (7) for τ = 0. Concatenating the correlation matrix,
Rxx(τ), for all values of τ ∈ {−N, . . . ,N}, results in a 3-
dimensional tensor. Instead of processing signals in the STFT
domain as in (4), the z-transform is used which captures and
preserves spatial, temporal, and spectral correlations of the
received signals. The z-transform of (7) is [16]

Rxx(z) =
∞∑

τ=−∞

Rxx(τ) z−τ. (8)

The so-obtained polynomial matrix is a matrix with poly-
nomial elements, or equivalently, a polynomial with matrix
coefficients. The PEVD of (8) is [16]

Rxx(z) ≈U(z)Λ(z)UP(z), (9)

whereU(z) is the eigenvector polynomial matrix and the diag-
onal polynomial matrix, Λ(z) contains the eigenvalues, and [·]P

is the para-Hermitian operator such that UP(z) = UH(1/z∗).
The approximation in (9) is due to the use iterative algorithms
[16], [17], [23], [24]. The enhanced speech signal can be
obtained as [1]

yPEVD(z) = uP
1 (z) x(z) (10)

where u1(z) is the eigenvector associated with the first eigen-
value. More details on PEVD are given in [1].

III. ProposedMethod

A principal shortcoming of classical beamforming methods
for speech enhancement is their inability to account fully
for spectro-temporal correlations in microphone signals [9].
Speech signals are known to exhibit periodic patterns in
time and frequency (e.g. during periods of voiced speech)
and it is therefore reasonable to assume that algorithms ca-
pable of capturing these patterns would demonstrate better
enhancement capabilities. One such method is the PEVD-
based speech enhancement method in [1], [19] which at
its core exploits the space-time correlation matrix in (7) to
estimate the desired signal subspace. However, PEVD methods
are computationally heavy, scaling as O(M3) where M is the
number of microphone signals [25]. In this work, we propose a
framework for PEVD-based speech enhancement in distributed
microphone arrays, illustrated in Fig. 1. Rather than processing
all microphone signals in all arrays as in (10), every array
is first processed by a beamformer defined in (4), thereby
producing Q beamformed signals. These are then processed
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Figure 1: Proposed method block diagram.

by the PEVD-enhancement algorithm to produce a single-
channel output. The computational complexity of the proposed
approach is therefore limited to O(Q3), where Q is smaller
than the total number of microphones. By beamforming in
local nodes rather than across arrays, there is no need for
the proposed method to synchronise microphones located in
different devices, and to estimate the acoustic transfer function
between devices.

A. Formulation

For the qth array, the Mq microphone signals are beam-
formed using (4). For example, using the DSB in (5) with
ďq(k, ℓ) = ȟq(k), produces yDS B

q (n) for q = 1, . . . ,Q. In this
method, the fixed DSB is preferred over the MVDR beam-
former as it does not rely on the estimation of the instantaneous
noise correlation matrix. The DSB output can be stacked
in vector form such that yDS B(n) = [yDS B

1 (n), . . . , yDS B
Q (n)]T .

The space-time covariance matrix RyDS ByDS B is computed using
(7). The enhanced signal is then obtained through the PEVD
decomposition of RyDS ByDS B (z) following (9) and (10), and
yielding the single-channel signal yDS B+PEVD(n).

IV. Experimental Setup

A. Setup

Anechoic speech signals are taken from IEEE sentences [26]
recorded by a male native British English speaker, sampled at
16 kHz. The considered scenario is depicted in Fig. 2; three
arrays of two microphones each are arranged in a circle of
radius r = 0.5 m in the centre of a 5 × 5 × 3 m room,
as if placed around a table. The simulated target speaker
is 1.25 m away from the closest microphone array. Speech
signals are convolved with simulated room impulse responses
(RIR) obtained using the generator in [27] to obtain the
microphone array signals. White sensor noise is added at a
30 dB signal-to-noise ratio (SNR). Spherical isotropic noise
is generated at the microphones using [28], and added to the
speech components using [29] in [30] such that the noise level
is kept constant within the room. This leads to different SNRs
at different microphones, and the input SNR is defined in the
remainder of this article at a reference microphone (in red in
Fig. 2). Babble noise is taken from the NATO RSG-10 noise

4 cm

1.25 m

: mic. array
: ref. mic for SNR meas.
: target speaker

θ : DOA definition
r : Circle radius, 0.5 m

: Circle/room centre

θ

r

Figure 2: Simulated room configuration (not to scale).

database [31], while speech-shaped noise [32] is generated
using [30].

B. Performance measures

To measure the denoising performance, the frequency-
weighted segmental SNR (fwSegSNR) [30], [33] is computed.
The STOI [34] measure is used to predict the speech intelli-
gibility.

C. Algorithm parameter selection

The speech enhancement performance of the beamformers
in (5) and (6), the PEVD in (10) applied to all 6 raw
microphone signals, and the proposed method are compared.
The steering vectors in (5) and (6) are selected using the
known reverberant RIRs between the target and individual
arrays. The noise covariance matrix in (6) is computed based
on the oracle noise signal, and diagonal loading is applied
to limit its condition number to ≤ 100 [35]. The STFT is
implemented with Hamming windows of 16 ms overlapping by
50%. The PEVD parameters were chosen following [1]. With
this parameter selection, correlations within 100 ms, which
were assumed to include the direct-path and early reflection
components, were captured and used by the algorithm.

V. Results and Discussion

A. Experiment 1: Baseline performance

The speech enhancement performance of the DSB, MVDR,
PEVD and proposed methods are evaluated for the configura-
tion in Fig. 2, with results averaged over 50 speech signals.
Other array positions were considered which yielded similar
results, and are therefore not presented in this work. The
STOI and fwSegSNR results for corruptive speech-shaped
noise in an anechoic environment and a reverberant room
(T60 = 400 ms) are plotted in Fig. 3. Since the DSB and
MVDR methods yield 3 outputs (1 per array), the minimum
and maximum performance values are plotted. The raw micro-
phone signals are similarly plotted for comparison purposes.

(a) STOI, T60 = 0 ms
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(c) STOI, T60 = 400 ms
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Figure 3: STOI and fwSegSNR improvements for diffuse
speech-shaped noise.
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(a) STOI, T60 = 0 ms
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(b) fwSegSNR, T60 = 0 ms
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(d) fwSegSNR, T60 = 400 ms
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Figure 4: Steering error robustness for diffuse speech-shaped
noise at 0 dB SNR, averaged over 50 sentences.

For the anechoic scenario in Figs. 3(a) and 3(b), the PEVD
and proposed methods yield very similar STOI and fwSegSNR
scores and slightly outperform the best performing DSB and
MVDR beamformers. The proposed method gives an increase
in STOI of up to 0.15 over the minimum scoring raw micro-
phone signal, and of 7.1 dB in fwSegSNR. The improvements
over the maximum scoring microphone and beamformers are
less significant (< 0.05 in STOI and < 2 dB in fwSegSNR). A
potential explanation for this marginal improvement is that the
maximum scoring microphone and beamformers are located
at the array closest to the desired source, therefore already
benefiting from a higher SNR. This effect is assumed to be
a reasonable modelling of real environments where individual
nodes, e.g. phones, are likely to be situated near talkers.

Similar results are observed for the reverberant scenario in
Figs. 3(c) and 3(d), with an improvement in STOI of 0.08
and in fwSegSNR of 8.2 dB of the proposed method over the
minimum scoring microphone.

Additional scenarios considering higher levels of reverber-
ation (T60 = 700 and 1000 ms) and babble and white noise
were examined which yielded similar results and are therefore
not included here for conciseness. The full results alongside
listening examples can be found in [36].

These results show two important trends. Firstly, the per-
formance of the PEVD enhancement applied to all 6 raw
microphones and that of the proposed method are comparable
across all SNRs and levels of reverberation. This indicates that
the reduced computational complexity of the proposed method
over the classical PEVD does not necessarily lead to a decrease
in denoising performance. Secondly, the PEVD and proposed
method always perform as well, or better than a beamformer
applied to the array closest to the desired talker. This result is
significant as PEVD-based methods achieve this near-optimal
performance without prior knowledge of the source location
or of the array geometry.

B. Experiment 2: Robustness to steering errors

In this experiment, the robustness of the proposed method
to steering vector errors is examined. When considering dis-
tributed arrays, there is ambiguity in the definition of direction-
of-arrival and thus in the quantification of steering vector
errors [2], [37]. In this experiment, the steering angle θ is
defined with respect to the centre of the distributed array
network and the line connecting it to the right-most array,
so that the target is considered to be at 0°and angles increase
in an anti-clockwise manner (see Fig. 2). This is such that
when errors are introduced, all arrays are steered in the same,
erroneous direction. Results for diffuse speech-shaped noise at
0 dB SNR in anechoic and reverberant rooms (T60 = 400 ms)
are plotted in Fig. 4. Similarly to Sec. V-A, minimum and
maximum scoring beamformers are plotted when applicable.

As is expected, the PEVD algorithm is unaffected by
steering vector errors since its implementation does not rely
on steering vectors. For the anechoic scenario in Figs. 4(a) and
4(b), the proposed method shows very little variations across
all considered angular errors, with a maximum deviation from
the ideal steering of 0.01 in STOI and 1.0 dB in fwSegSNR.
Conversely, the MVDR beamformer is strongly affected by
mis-steering, with maximum variations of 0.18 in STOI and
12.1 dB in fwSegSNR over the ideal steering. Similar obser-
vations can be made for the reverberant case in Figs. 4(c)
and 4(d), with maximum deviations for the proposed method
of 0.02 in STOI and 1.8 dB in fwSegSNR. Additionally, the
proposed method slightly outperforms the PEVD method in
fwSegSNR score by an average of 0.5 dB.

The proposed method shows very high robustness to steer-
ing vector errors in comparison to classical beamforming
methods. It also exhibits a very similar performance to the
PEVD algorithm applied to the 6 raw microphone signals,
notwithstanding the fact that it is based on 3 wrongly steered
beamformers. This suggests that the PEVD processing in the
proposed method is indeed capable of extracting spectro-
temporal correlation in signals even when the spatial cues are
sub-optimal. This result is highly significant for arrays with
unknown or varying geometries, where steering vectors can
only be estimated to a certain degree of accuracy.

VI. Conclusion
This work extended the use of PEVD from singular micro-

phone arrays to distributed microphone networks. It introduced
a novel framework for speech enhancement using a combina-
tion of local beamformers and PEVD enhancement. The pro-
posed method was shown to improve predicted intelligibility
by up to 0.15 in STOI and to increase the frequency-weighted
segmental SNR by up to 7.1 dB compared to raw microphone
signals. The proposed method also showed strong robustness
to steering vector error, with a maximum deviation in STOI
scores of 0.02 compared to the ideal steering case. These
results were observed in anechoic and reverberant conditions.
Overall, the results show the potential of PEVD-based en-
hancement methods in distributed arrays, where the estimation
of array geometry and steering vectors is challenging.
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