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Abstract—Microphone arrays are widely used for speech
enhancement applications. We consider the enhancement of
multiple, desired and undesired, sources in a noisy environment,
the approximate locations of which are assumed to be known
a priori. For the given scenario, the linear constraint minimum
variance (LCMV) beamformer is commonly used. Although an
LCMV-based beamformer provides the optimal solution for the
case of static sources, the problem becomes more challenging
when the sources’ locations are constantly changing. The LCMV
spatial notch pointing at the interference location is usually
very sharp, resulting in cancellation degradation in the case of
even small movements of the interfering sources. We propose
an alternative scheme to the traditional LCMV beamformer that
efficiently tracks and cancels the interfering source. The scheme is
presented for a dual source scenario. We prove that for the static
scenario, the proposed method and the LCMV beamformers
are mathematically equivalent. However, for practical uses, we
demonstrate that the proposed algorithm outperforms the LCMV
in terms of signal-to-interference ratio (SIR) using a simulated
room environment, as well as in real recorded data.

Index Terms—beamforming, LCMV, MVDR, noise reduction,
RTF, adaptive filter, AIC.

I. INTRODUCTION

New applications that are arising in the fields of hearing
aids, speech recognition, and cellular communication present
new challenges for speech enhancement algorithms. As tech-
nology advances and the deployment of microphone arrays
becomes common, multichannel processing methods, in par-
ticular beamforming techniques, are being utilized.

Commonly used beamforming designs optimize the mini-
mum variance distortionless response (MVDR) criterion [1],
which minimizes the noise power at the output while maintain-
ing the target speech signal undistorted. In more complicated
scenarios where several sources, i.e., competing speakers, ex-
ist, it is commonly desired to mitigate the interfering sources.
The multiple constraints extension of the MVDR, known as
the linear constraint minimum variance (LCMV) beamformer,
is a suitable solution [2].

Although theoretically the LCMV provides the optimal
solution, in practice the problem becomes more challenging
when the interfering source location is constantly changing.
Small movements of the undesired source result in a large
degradation of the interference cancellation because of the
sharp characteristic of the LCMV’s spatial notch. This fact
calls for rapid tracking of the interfering source location and
frequent updates of the LCMV solution in order to maintain

high cancellation levels. High cadence updates of the LCMV
beamformer are computationally expensive because of the
need to re-calculate the LCMV filter weights. Furthermore,
in a generalized sidelobe canceler (GSC) based LCMV im-
plementation [3][4][5][6], rapid updates of the LCMV design
cause constant re-convergence of the adaptive noise canceler
(ANC) block, which can lead to poor noise cancellation and
degradation of the speech quality [7].

In this paper, we propose an alternative scheme to the tradi-
tional LCMV beamformer, which efficiently tracks and cancels
the interfering source. A novel dual MVDR-based beamformer
is derived, which (similarly to the LCMV beamformer) is
aimed to extract a distortion-less target source, to cancel an
interference source, and to minimize the background noise
power. The derivation is achieved in two stages. First, a spatial
processor applies two beamformers, which respectively are
MVDR beamformers steered toward the target and interfering
sources. The output signals of the processor are denoted as
the target MVDR signal and the interference MVDR signal,
respectively. Then, two adaptive interference canceller (AIC)
systems are applied. The first AIC is aimed at cancelling the
target signal from the interference MVDR signal, such that
the output of the filter is the reference of the second AIC.
Any target component is eliminated from this interference
signal. The second AIC is aimed at cancelling this interference
signal from the target MVDR signal, such that the filter forces
the output signal to resemble a target signal without the
interference component. We refer to this beamformer as the
AIC dual MVDR (AIC-DMVDR) beamformer.

The analytical expression of the AIC-DMVDR beamformer
filter is derived. We prove that for the static scenario, the
proposed AIC-DMVDR and the LCMV beamformers are
mathematically equivalent. However, for practical uses, we
demonstrate that the AIC-DMVDR beamformer outperforms
the LCMV in terms of signal-to-interference ratio (SIR) using
a simulated room environment, as well as in real recorded
data.

II. CONFIGURATION AND NOTATION

Consider an enclosure with 2 sources, a target source
denoted s0 and an interference source s1. The sources sig-
nals are contaminated by additive noise comprising of any
combination of coherent, diffuse and spatially white noise
signals, impinging on a microphone array (MA) consisting
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of M microphones. The microphone signals are sampled at a
sampling rate of fs and transformed into the short time Fourier
transform (STFT) using a window of length K with overlap
η between frames. The transformed microphone signals are
stacked into an M dimensional vector per time-frequency bin.
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Fig. 1: Problem Description.

The signal x picked up by the MA can be described as:

x(`, k) = h0(`, k)s0(`, k) + h1(`, k)s1(`, k) + v(`, k) (1)

where ` and k are time-frame and frequency bin indices
respectively, hi(`, k), i = [0, 1], is a vector of the acoustic
transfer functions (ATFs) between source si and the MA, and
v(`, k) is the noise component vector with a spatial covariance
matrix of:

Φv(`, k) = E{v(`, k)vH(`, k)} (2)

with operator (·)H denoting conjugate-transpose, and E{·}
denoting the expectation operator.

Given a-priori knowledge of hi(`, k)
1, the problem at hand

is to design a beamformer w(`, k) such that the output signal

z(`, k) = wH(`, k)x(`, k) (3)

is enhanced by minimizing the output noise energy and
cancelling the undesired source signal while maintaining
distortion-less response towards the target source signal. The
described scenario is depicted in Fig. 1.

In the following, time-frame and frequency bin indices are
omitted for brevity.

III. NOISE REDUCTION TECHNIQUE

In Section III-A, the MVDR and LCMV beamformers are
reviewed. Then, in Section III-B the proposed AIC-DMVDR
beamformer is introduced.

A. MVDR and LCMV beamformers

The well-known MVDR beamformer is designed to repro-
duce the target source without distortion while minimizing the
background noise power, i.e.,

wMVDR = argmin
w

wHΦvw s.t. hH
0 w = 1. (4)

The filter that solves the problem can be written as2

wMVDR =
Φ−1v h0

hH
0 Φ−1v h0

. (5)

To solve the problem addressed in this paper, the multi-
constraints extension of the MVDR, known as the LCMV

1The estimation of hi(`, k) or alternatively its RTF representation, is widely
researched [3], [8] and is not addressed in the remainder of the paper.

2Note that the MVDR beamformer steered toward the interfering source
can be obtained by substituting h0 with h1 in (5).

beamformer, is required [1]. The LCMV beamformer is de-
signed to reproduce the target source component while can-
celling the directional interference and minimizing the back-
ground noise power. The LCMV beamformer cost function
can be written as

wLCMV = argmin
w

wHΦvw s.t. CHw = g, (6)

where C denotes the constraint matrix and g denotes the
desired vector with

C =
[

h0 h1

]
, g =

[
1 0

]T
. (7)

Operator (·)T denotes matrix transpose. The filter that solves
the problem can be written as [1]

wLCMV = Φ−1v C
(
CHΦ−1v C

)−1
g. (8)

B. Proposed beamformer

In the following, we present a novel scheme called
AIC-DMVDR as an alternative to the LCMV solution.

Consider the configuration depicted in Fig. 2.
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Fig. 2: Proposed solution.

The derivation of the beamformer is achieved in two stages.
First, a spatial processor applies two beamformers, wi, i =
[0, 1], which respectively are MVDR beamformers steered
toward the target and interfering sources. Using (5), the target
MVDR signal y0 and the interference MVDR signal y1, can
be described as

y0 = wH
0 x = s0 +

hH
0 Φ−1

V h1

hH
0 Φ−1

V h0
s1 +

hH
0 Φ−1

V

hH
0 Φ−1

V h0
v

y1 = wH
1 x = s1 +

hH
1 Φ−1

V h0

hH
1 Φ−1

V h1
s0 +

hH
1 Φ−1

V

hH
1 Φ−1

V h1
v.

(9)

The target MVDR signal y0 is directly related to the target
signal distortion induced at the AIC-DMVDR beamformer
output. The closer h0 estimation is to the true ATF vector h0,
the lower is the target signal distortion at the algorithm output.
Robust beamformer design methods [9] can be employed when
designing w0 in order to widen the beamformer’s main lobe
and reduce the target signal distortion.

In the second stage of the AIC-DMVDR derivation, two
AIC systems are applied. The first AIC filter, a0, is aimed
at cancelling the target signal from the interference MVDR
signal, thereby preventing distortion resulting from self can-
cellation of the target at the AIC-DMVDR beamformer output.
The interference MVDR signal y1 is the input signal to the
adaptive filter, the reference of which is the target MVDR sig-
nal y0. The output of the AIC system y2 is the reference to the
second AIC system. Any target component is eliminated from
this interference signal. The second AIC filter, a1, is aimed at
cancelling this interference signal, y2, from the target MVDR
signal, y0, such that the filter forces the AIC-DMVDR output

61



signal z to resemble a target signal without the interference
component.

1) Closed-form solution for static sources’ location: Con-
sidering initially the static sources case, to achieve perfect
cancellation of s0, a0 optimal weight is calculated accord-
ing to the Wiener solution [10] for the noiseless case, i.e.,
s1 = 0,v = 0, and

a0 = r−10 p0 (10)

where r0 = E{|y0|2} , p0 = E{y0y∗1}, and operator (·)∗ de-
notes complex conjugate. Using (9), the resulting a0 optimum
solution is given by

a0 =
hH
0 Φ−1V h1

hH
1 Φ−1V h1

. (11)

The output of the first AIC system y2 can be described as

y2 = y1 − a∗0y0 = sin2(θ)s1 +
hH
1 Φ−1V TH

0

hH
1 Φ−1V h1

v, (12)

where

sin2(θ) =

(
1−

|hH
0 Φ−1V h1|2

hH
0 Φ−1V h0hH

1 Φ−1V h1

)
(13)

and

T0 =

(
I−

Φ−1V h0h
H
0

hH
0 Φ−1V h0

)
(14)

is the orthogonal projection matrix w.r.t. h0. Since y2 does
not include an instance of s0, there cannot exist any signal
distortion resulting from self cancellation due to the second
AIC filter, a1.

The second AIC filter, a1, is similarly derived by substitut-
ing y0 and y1, with y2 and y0, respectively, such that (9) and
(12) are used to evaluate r1 = E{|y2|2} and p1 = E{y2y∗0}
for the clean case (s0 = 0,v = 0). The optimal AIC filter, a1,
is given by

a1 = r−11 p1 =
hH
1 Φ−1V h0

hH
0 Φ−1V h0 sin

2(θ)
. (15)

Finally, the output signal is given by

z = y0 − a∗1y2. (16)

By rearranging terms, using (11), (12), (15), and (16), the filter
for the proposed AIC-DMVDR beamformer can be written as

wAIC-DMVDR = w0 − a1 (w1 − a0w0) . (17)

2) Adaptive form solution for dynamic sources location:
In the dynamic sources case, the a0 and a1 values cannot
be derived explicitly from h0 and h1. For this task, system
identification techniques are required. To evaluate a0, we
consider time segments in which s1 is inactive. Using (9), (11),
and (5), the interference MVDR signal y1, can be expressed
by

y1 = a∗0s0 + wH
1 v = a∗0y0 + ṽ1, (18)

where

ṽ1 =
(
wH

1 − a∗0wH
0

)
v. (19)

Assuming slowly changing ATFs and noise statistics, the cross
power spectral density (PSD) between y1 and y0 for a given

frame ` can be expressed as

S(`)
y1y0

= a∗0S
(`)
y0y0

+ Sṽ1y0
(20)

As v is assumed to be stationary and uncorrelated to s0, Sṽ1y0

is independent of the frame index ` [3]. If ṽ1 was uncorrelated
with y0, standard adaptive filter (AF) techniques could be
used to solve for a0. Unfortunately, as (19) and (9) state,
the two variables are correlated, and standard AF techniques
cannot be used. Alternatively, [11] suggests harnessing the
non-stationary nature of speech signals to obtain an unbiased
estimation of a0. The following describes a recursive least
squares (RLS) based adaptation of the solution given in [11].

The estimate of the auto and cross PSDs Ŝ(`)
y0y0 and Ŝ

(`)
y1y0

are given by

Ŝ
(`)
y1y0 = µŜ

(`−1)
y1y0 + (1− µ)y1(`)y∗0(`)

Ŝ
(`)
y0y0 = µŜ

(`−1)
y0y0 + (1− µ)|y0(`)|2,

(21)

where µ is the estimation smoothing factor. From (20), we
obtain the basis for a least squares (LS) estimation of a0

Ŝ(`)
y1y0

=
[
a∗0 Sṽ1y0

]
φ(`) + ε(`), (22)

where φ(`) =
[
Ŝ
(`)
y0y0 1

]T
and ε(`) is the estimation error.

Instead of using a set of over determined equations to solve
for a0 in (22) as suggested by [11], we suggest using an RLS
approach. Defining the deterministic autocorrelation matrix
w.r.t. φ(`) A(`), and the deterministic cross correlation vector
b(`) as

A(`) = λA(`− 1) + φ(`)φH(`)

b(`) = λb(`− 1) + φ(`)Ŝ
(`)
y1y0 ,

(23)

where λ is the RLS forgetting factor. The estimation of a0 is
given by [

â∗0
Ŝṽ1y0

]
= A−1(`)b(`). (24)

A similar method is used to obtain a1. Consider time
segments where s0 is inactive. Using (9), (5), (15), and (12),
y0 can be expressed by

y0 = a∗1 sin
2(θ)s1 + wH

0 v = a∗1y2 + ṽ0, (25)

where

ṽ0 =
(
wH

0 − a∗1wH
1 TH

0

)
v. (26)

Observing the similarity between (25) and (18), the process
given by equations (21) - (24) can be used to obtain a1, by
substituting Ŝy1y0

, Ŝy0y0
, y1 and ṽ1 with Ŝy0y2

, Ŝy2y2
, y0 and

ṽ0.

IV. RELATION BETWEEN THE AIC-DMVDR AND THE
LCMV BEAMFORMERS

In this section, we first show that the LCMV beamformer
can be decomposed to two MVDR beamformers steered to-
ward the target and interfering sources. Then, we show the
relation between the proposed AIC-DMVDR beamformer and
the LCMV beamformer.

The filter of the LCMV beamformer can be calculated by
substituting (7), and (13) into (8). The filter can be written as
(Section III.F in [12])
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wLCMV =
1

sin2(θ)

Φ−1V h0

hH
0 Φ−1V h0

−
hH
1 Φ−1V h0

sin2(θ)hH
0 Φ−1V h0

Φ−1V h1

hH
1 Φ−1V h1

.

(27)
Clearly, the LCMV beamformer is a mix of a target and an
interference MVDR beamformers, i.e.,

wLCMV =
1

sin2(θ)
w0 −

hH
1 Φ−1V h0

sin2(θ)hH
0 Φ−1V h0

w1. (28)

Note that
1

sin2(θ)
=

sin2(θ) + cos2(θ)

sin2(θ)
= 1 +

cos2(θ)

sin2(θ)
. (29)

Rearranging the terms in (28) and using (29) and (13), the
filter of the LCMV beamformer is given by

wLCMV = w0 −
hH
1 Φ−1V h0

sin2(θ)hH
0 Φ−1V h0

(
w1 −

hH
0 Φ−1V h1

hH
1 Φ−1V h1

w0

)
.

(30)
Comparing (30) with (17) and using (11) and (15), it is shown
that mathematically the LCMV beamformer is equivalent to
the AIC-DMVDR beamformer. Theoretically, the proposed
approach provides the same performance as a perfectly tuned
LCMV beamformer. However, in practical uses, in a dynamic
sources case as the a0 and a1 cancellation filters constantly
track the sources location, the proposed AIC-DMVDR beam-
former is expected to outperform the traditional LCMV beam-
former.

V. EXPERIMENTAL RESULTS

In this section, we present simulation results comparing the
performance of the proposed beamformer and the traditional
LCMV beamformer, for simulated data (Section V-A) and real-
world recordings (Section V-B).

In both experiments, one target speaker and one interference
speaker, contaminated by background noise, were used. The
sampling frequency was 16 kHz. The signals were transformed
to the STFT domain with 2048 points, 75% overlap, and
a Hamming analysis window. The signals’ relative transfer
functions (RTFs) were estimated using the eigenvalue decom-
position (EVD) method [13]. To decide on exclusive signal
activity, source si was declared exclusive if the following
directional based decision rule was fulfilled:

h̃H
i xxH h̃i

Tr{xxH} − h̃H
i xxH h̃i

> Th
h̃H
j xxH h̃j

Tr{xxH} − h̃H
j xxH h̃j

(31)

where Tr{·} denotes trace operator, h̃i = hi

‖hi‖ , and Th =
10 db was used. For both experiments, we used a scenario
with a SIR of 3 dB and signal-to-noise ratio (SNR) of 15 dB
measured on the reference microphone. The proposed method
AICs were estimated using the process described in Sec.
III-B2. Speech input signals were taken from [14]. The two
beamformers were evaluated using the SIR improvement and
the SNR improvement.

A. Simulated Environment

For the simulated data, a conference room impulse re-
sponses (RIRs) were simulated with a RIR generator as

described in [15]. The room dimensions were 3m× 4m× 3m
with RT60 = 360 ms. A uniform line array consisting of
8 microphones and 1 cm interspacing was considered. Two
active speakers were located at a distance of 0.85 m from
the array center. The target source was located at 20o and the
interference source was initially located at 120o. Diffuse noise
was simulated using the noise generator described in [16].
To demonstrate the AIC-DMVDR beamformer’s robustness to
small movements of the interference source, the simulation
was conducted several times. In each iteration, the interference
source location was shifted by an additional 0.25o without
changing the beamformer’s design.

The output SNR and SIR were measured for both algo-
rithms. The results are summarized in Fig. 3. It is evident
that while the two beamformers obtain comparable values of
SNR improvements, regardless of the shift in the interference
source location, the SIR improvement of the LCMV beam-
former drops by around 10 dB for a small shift of 0.5o.
The proposed beamformer maintains the SIR levels throughout
the experiment as it tracks the interference source movement.
The difference in performance between the two algorithms for
angle offset of 0o is related to estimation errors of the proposed
algorithm.
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Fig. 3: SIR (a) and SNR (b) improvement, LCMV vs. proposed algorithm.
Simulated environment.

B. Real-world recordings

For the second experiment, real-world recordings, using
a database of RIRs obtained from the acoustic lab at Bar-
Ilan University [17], were used. The room dimensions were
6m× 6m× 2.4m, and its acoustic properties could be con-
trolled by opening and closing various panels mounted on the
walls, ceiling, and floor, thereby changing their reflectivity. A
room configuration with RT60 = 360 ms was evaluated. Using
the recorded RIRs from [17], two alternately active speakers
were located at a distance of 2 m from the array center. The
target source was located at 45o and the interference source at
135o. To test the proposed algorithm’s tracking capabilities,
the interference source shifted its location to 120o in the
middle of the simulation, starting from around 20 s. The
simulation noise field consisted of a directional source located
at 75o immersed in a white noise field.

Fig. 4 depicts the sonograms of the input and the target
source as sampled at the reference channel, as well as the
outputs of both the LCMV and AIC-DMVDR beamformers.
The time of the interference source location shift is highlighted
by a yellow line.
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It is evident that both the LCMV and the AIC-DMVDR
beamformers significantly attenuate the stationary noise. How-
ever, from around 20 s in the simulation, as indicated by the
yellow line in Fig. 4, while the interference cancellation of the
proposed AIC beamformer is maintained, the cancellation of
the interference source for the LCMV beamformer is degraded,
corresponding to the source’s movement.

In addition, the output SNR and SIR were measured for
both algorithms. The results are summarized in Table I. It
is evident that the two beamformers obtain comparable SNR
and SIR values for the first source’s position. However, while
the SIR of the LCMV beamformer drops by around 10 dB
for the interference source’s second position, as the LCMV
beamformer’s spatial notch no longer points at its location,
the proposed AIC-DMVDR beamformer maintains the SIR
levels as it tracks the interference source’s movement. The
SNR improvement for both beamformers remains comparable
for the second source’s position.

TABLE I: Recorded environment: Comparison of LCMV and proposed
algorithms

SNR [dB] SIR [dB]
Input 15.0 3.8

LCMV Position 1 19.2 19.8
Position 2 20.0 9.6

Proposed Position 1 21.6 18.9
Position 2 19.2 17.8

(a) Input (b) Target

(c) LCMV Output (d) AIC-DMVDR output

Fig. 4: Sonograms of the input signal (a), target signal (b), and the LCMV
(c) and AIC-DMVDR (d) output signals.

VI. SUMMARY

In this paper, we proposed a novel MVDR-based beam-
former that is designed to extract the target source and
efficiently track and cancel an interference source in a noisy
and reverberant environment. The proposed beamformer was
theoretically analyzed and proven to be mathematically equiv-
alent to a perfectly tuned LCMV beamformer. The proposed

method was tested in both synthetic simulation and real life
scenarios and was shown to outperform the traditional LCMV
approach for a dynamic interference source. Examining the
robustness of the proposed method to estimation errors in
dynamic scenarios is left for future work.
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