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Abstract—A majorization-minimization (MM) algorithm for
independent vector analysis optimizes a separation matrix W :=
[w1, . . . ,wm]H ∈ Cm×m by minimizing a surrogate function
of the form L(W ) :=

∑m
i=1 w

H
i Viwi − log | detW |2, where

m ∈ N is the number of sensors and positive definite matrices
V1, . . . , Vm ∈ Cm×m are constructed in each MM iteration. For
m ≥ 3, no algorithm has been found to obtain a global minimum
of L(W ). Instead, block coordinate descent (BCD) methods with
closed-form update formulas have been developed for minimizing
L(W ) and shown to be effective. One such BCD is called iterative
projection (IP) that updates one or two rows of W in each
iteration. Another BCD is called iterative source steering (ISS)
that updates one column of the mixing matrix A := W−1 in each
iteration. Although the time complexity per iteration of ISS is
m times smaller than that of IP, the conventional ISS converges
slower than the current fastest IP (called IP2) that updates two
rows of W in each iteration. We here extend this ISS to ISS2 that
can update two columns of A in each iteration while maintaining
its small time complexity. To this end, we provide a unified way
for developing new ISS type methods from which ISS2 as well as
the conventional ISS can be immediately obtained in a systematic
manner. Numerical experiments to separate reverberant speech
mixtures show that our ISS2 converges in fewer MM iterations
than the conventional ISS, and is comparable to IP2.

Index Terms—independent component analysis (ICA), inde-
pendent vector analysis (IVA), majorization-minimization (MM),
block coordinate descent (BCD)

I. INTRODUCTION

INDEPENDENT component analysis (ICA) [1] and its
extension, independent vector analysis (IVA) [2], are funda-

mental blind source separation (BSS) methods that have been
applied in numerous fields. Although theoretical properties
such as identifiability of ICA [1, Chapter 4] [3] and IVA [4]–
[6] have been well studied, the algorithms developed for them
still need improvement because fast and stable optimization is
indispensable when applied to real-world applications.

Early algorithms for ICA include Infomax [7] and the rela-
tive (or natural) gradient method [8], [9]. To accelerate these
gradient-based algorithms using curvature information, several
second-order algorithms with (relative) Hessian approximation
were proposed [10]–[13]. In another research direction, a
primal-dual splitting algorithm (e.g., [14]) for IVA [15] and
its heuristic extension [16] based on the plug-and-play scheme
were recently developed. However, all the above algorithms
rely on good policies for determining hyperparameters such as
step size, and it is usually difficult to find such policies that are
suitable for any kind of signals. Other famous methods, such

as FastICA [17] and its improvement [18], assume orthogonal
constraint for the separated signals, which is not necessarily
optimal, especially for short signals.

To avoid these problems, a majorization-minimization
(MM) algorithm [19] for ICA [20], [21] and IVA [22] without
such tuning parameters as the step size was proposed about a
decade ago (see Section II-B) and has been studied extensively
(mainly in the audio source separation community) because
it can attain fast and stable optimization. Interestingly, a
majorizer (or a surrogate function) constructed in the MM
algorithm had already been studied in the ICA literature [23]–
[25], not related to the MM approach.

Because the majorizer is non-convex and obtaining a global
minimum is difficult, two families of block coordinate descent
(BCD) methods [26] with closed-form update formulas were
developed. One is called iterative projection (IP) [27]–[31]
that updates one or two rows of the separation matrix W ∈
Cm×m in each BCD iteration, where m ∈ N is the number of
sensors. The other is called iterative source steering (ISS) [32]
that updates one column of the mixing matrix A := W−1 in
each BCD iteration. Although ISS reduces the time complexity
of IP by a factor of 1/m, it requires more MM iterations to
converge than the current fastest IP (called IP2) that updates
two rows of W in each iteration.

In this paper, we extend the conventional ISS so that it can
update two columns of A := W−1 in each iteration while
keeping its small time complexity. The numerical simulation
demonstrates the effectiveness of the proposed approach.

Notation: Let GL(m) be the set of all m ×m nonsigular
matrices over C, and let Sm+ ⊂ Cm×m be the set of all Hermi-
tian positive semidefinite matrices. For a matrix A ∈ Cm×n,
let A> and AH denote the transpose and conjugate transpose
of A, Aij be the (i, j)th entry of A, Ai,• ∈ C1×n be the ith
row of A, Ai:i+d,• := [A>i,•, . . . , A

>
i+d,•]

> ∈ C(d+1)×n, and
diag(Ai,•) ∈ Cn×n be the diagonal matrix whose diagonal
entries are Ai,•. The identity and zero matrices are denoted as
Id ∈ Cd×d and Oi,j ∈ Ci×j , respectively.

II. BACKGROUND

A. Independent Vector Analysis (IVA)

Consider a set of K ≥ 1 linear mixtures:

X [k] = A[k]S[k] ∈ Cm×n, k = 1, . . . ,K, (1)
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where m ∈ N is the number of sensors, n ∈ N is the number of
sample points, X [k] ∈ Cm×n is an observation, S[k] ∈ Cm×n
is the original m source signals, and A[k] ∈ GL(m) is called
a mixing matrix. The goal of IVA is to estimate the set of the
separation matrices W [k] ∈ GL(m), k = 1, . . . ,K satisfying

W [k]A[k] = D[k]Π, k = 1, . . . ,K, (2)

where D[k] and Π are respectively the arbitrary diagonal
and permutation matrices of size m × m that correspond to
the scale and permutation ambiguities of separated signals
Y [k] := W [k]X [k]. Note that permutation matrix Π must be
independent of k to ensure that the orders of the K separated
signals Y [1], . . . , Y [K] are aligned between different mixtures.

To achieve the above, IVA relies on the assumption that, for
each i = 1, . . . ,m and j = 1, . . . , n, the vector

yij := [Y
[1]
ij , . . . , Y

[K]
ij ]> ∈ CK (3)

follows a probability density function with second or higher-
order correlation [4]–[6]. Also, it is commonly assumed that
the random variables {yij}ij are mutually independent. Under
this model, the negative log-likelihood, which yields a cost
function of W := (W [k])Kk=1, is expressed as:

L0(W) := − 1

n
log p(X [1], . . . , X [K];W)

= − 1

n

m∑
i=1

n∑
j=1

log p(yij)−
K∑
k=1

log |detW [k]|2. (4)

B. Majorization-Minimization Algorithm for IVA

An MM algorithm for ICA was proposed by (Ono and
Miyabe, 2010 [20]), rediscovered by (Ablin, Gramfort, Car-
doso, and Bach, 2019 [21]), and extended for IVA by (Ono,
2011 [22]). Here we briefly review it.

Let p(y) be a circularly-symmetric probability density func-
tion of a random variable y, and a function ϕ : R≥0 → R
be given by ϕ(‖y‖2) := − log p(y) with ‖y‖2 :=

√
yHy.

We say that p(y) is super-Gaussian if ϕ′(r)/r is decreasing
on r ∈ (0,∞) = R>0, where ϕ′ is the first derivative of ϕ
(see, e.g., [20], [33], and [34, pp. 60–61]). For instance, a
generalized Gaussian distribution (GGD)

ϕ(‖y‖2) = ‖y‖β2 + const., 0 < β < 2 (5)

is super-Gaussian. GGD with β = 1 is nothing but the Laplace
distribution. For a super-Gaussian ϕ(r), we have (see [20])

ϕ(r) = min
α>0

[ ϕ′(α)

2α
· r2 +

(
ϕ(α)− αϕ′(α)

2

) ]
(6)

for all r ∈ R>0 and its minimum is attained at α = r. Using
(6) for each ϕ(‖yij‖2) := − log p(yij) in (4), we can develop
an MM algorithm for IVA [22] that alternately updates an
auxiliary variable Λ ∈ Rm×n≥0 and W by repeating

Λij ←
ϕ′(‖yij‖2)

‖yij‖2
, i = 1, . . . ,m; j = 1, . . . , n, (7)

W [k] ∈ argmin
W [k]∈GL(m)

L[k](W [k],Λ), k = 1, . . . ,K, (8)

where we define

L[k](W [k],Λ) =

m∑
i=1

(w
[k]
i )HV

[k]
i w

[k]
i − log |detW [k]|2, (9)

V
[k]
i =

1

2n
X [k] diag(Λi,•) (X [k])H ∈ Sm+ . (10)

w
[k]
i = (W

[k]
i,• )H (⇔W [k] = [w

[k]
1 , . . . ,w[k]

m ]H), (11)

Note that Λi,• ∈ R1×n
≥0 in (10) is the ith row of Λ.

When m = 2 and W [k] ∈ C2×2, problem (8) has a closed-
form solution [24], [35]. However, for m ≥ 3, no algorithm
has been found that obtains a global minimum of (8), and
several BCD algorithms were developed. In this paper, we
refer to such MM-based IVA approaches as MM+BCD.

Hereafter, for ease of notation, we omit the upper right index
·[k] when discussing (8)–(11) and simply denote the objective
function L[k](W [k],Λ) as L(W ).

III. PROPOSED MM+BCD ALGORITHM

We generalize the definition of iterative source steering
(ISS) to be a family of MM+BCD algorithms that update
several columns of A := W−1 in each iteration based on the
minimization of L(W ) with respect to those columns. The
conventional ISS [32] (called ISS1) updates one column of A
in each iteration. We extend this ISS1 to ISS2 so that it can
update two columns of A in each iteration. To this end, we
newly provide a unified way to develop ISSd for any d ≥ 1.

A. Definition of ISSd
Let d be a divisor of m and L := m/d. Consider the

partition of A into L submatrices with d columns:

A = [A(1)︸︷︷︸
d

| · · · | A(L)︸︷︷︸
d

] ∈ Cm×m. (12)

ISSd is an MM+BCD method that cyclically updates

Λ→ (W,A(1))→ (W,A(2))→ · · · → (W,A(L)) (13)

one by one based on (7) for updating Λ and

(W,A(`)) ∈ argmin
(W,A(`))

{L(W ) |WA = Im} (14)

for updating (W,A(`)) with ` = 1, . . . , L. When d = 1, our
definition of ISS1 coincides with the conventional ISS1 [32].

B. Multiplicative update (MU) formulation for ISSd
We show that ISSd can be written as a multiplicative update

(MU) algorithm for W (or equivalently Y = WX). To begin
with, we provide the following proposition.

Proposition 1. Update rule (14) with ` = 1 is equivalent to
the following MU rule for W (and A):

T ∈ argmin
T
{L(TW ) | T ∈ DISSd

} , (15)

W ← TW (and A← AT−1), (16)

where we define

DISSd
:=

{[
P Od,m−d
Q Im−d

] ∣∣∣∣ P ∈ GL(d), Q ∈ C(m−d)×d
}
.
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Proof. By the update of Anew ← AT−1 with T−1 ∈ DISSd
,

A(1) can take an arbitrary value while [A(2), . . . , A(L)] remains
unchanged. To keep the constraint WA = Im in (14), W must
be uniquely updated to W new ← TW :[

P−1 Od,m−d
−QP−1 Im−d

]
W︸ ︷︷ ︸

W new = TW

A

[
P Od,m−d
Q Im−d

]
︸ ︷︷ ︸

Anew = AT−1

= Im.

(Note that the set DISSd
is closed under matrix inversion.) This

T belongs to and runs over DISSd
when T−1 runs over DISSd

.
Thus, Eq. (14) with ` = 1 is equivalent to (15)–(16).

We next show that Eq. (14) with ` ∈ {2, . . . , L} can also be
rewritten in the same way as (15)–(16) by properly permuting
the rows of W and the columns of A in advance. To see this,
let us define a (block) permutation matrix

Πd =


Id

. . .
Id

Id

 ∈ Cm×m (17)

and permute the rows of (W,Y,Λ) and columns of A by

W ← Π`−1
d W, Y ← Π`−1

d Y, Λ← Π`−1
d Λ,

A← A(Π`−1
d )> = [A(`), . . . , A(L), A(1), . . . , A(`−1) ].

This permutation keeps both the objective function and con-
straint WA = Im in (14) since ΠdΠ

>
d = Im. Also, the

first d columns of A(Π`−1
d )> are A(`). Thus, Eq. (14) with

` ≥ 2 is also essentially equivalent to (15)–(16). Due to this
observation, we only need to address problem (15) below.

C. Derivation of ISS2 (and new derivation of ISS1)

We discuss problem (15) for general d ≥ 1 and develop a
closed-form solution for it when d = 2 (proposed ISS2) and
d = 1 (new derivation of ISS1).

For T ∈ DISSd
, the ith row vector of P (resp. Q) is denoted

as pH
i ∈ C1×d (resp. qH

d+i ∈ C1×d):

P = [p1, . . . ,pd]
H ∈ Cd×d, (18)

Q = [qd+1, . . . , qm]H ∈ C(m−d)×d. (19)

Then the objective function L(TW ) can be expressed as

L(TW ) =

d∑
i=1

pH
i Gipi − log |detP |2

+

m∑
i=d+1

[
qi
1

]H [
Gi gi
gH
i ci

] [
qi
1

]
+ const., (20)

where for each i = 1, . . . ,m,

Gi = W1:d,•ViW
H
1:d,• =

1

2n
Y1:d,• diag(Λi,•) (Y1:d,•)

H ∈ Cd×d,

gi = W1:d,•ViW
H
i,• =

1

2n
Y1:d,• diag(Λi,•) (Yi,•)

H ∈ Cd×1,

and ci ∈ C is constant. Since the variables P and Q are split
in (20), we can optimize them separately.

1) Optimization of Q for general d ≥ 1: Since the ob-
jective function L(TW ) is quadratic with respect to Q, and
Gd+1, . . . , Gm are positive definite in general (if d ≤ n), the
global optimal solution for Q is obtained as

qi = −G−1i gi ∈ Cd×1, i = d+ 1, . . . ,m. (21)

Along with this, the separated signals are updated as

Yi,• ← Yi,• + qH
i Y1:d,• = Yi,• − gH

i G
−1
i Y1:d,• ∈ C1×n (22)

for each i = d+ 1, . . . ,m. Note that in ISSd we only need to
update (Y,Λ) but not W since the surrogate function L(TW )
given by (20) can be constructed from (Y,Λ) only.

2) Optimization of P for d ≥ 3: We want to solve

P ∈ argmin
P∈GL(d)

d∑
i=1

pH
i Gipi − log |detP |2. (23)

However, as mentioned in Section II-B, obtaining a global
minimum of (23) for d ≥ 3 is a long-standing open prob-
lem [24], and we leave this task for future work.

3) Optimization of P for d = 2 (ISS2 case): When d = 2,
problem (23) is known to have a closed-form solution [35]:

H = G−11 G2 ∈ C2×2, (24)

θ1 =
Tr(H) +

√
(Tr(H))2 − 4 det(H)

2
, θ2 =

detH

θ1
,

u1 =

[
H22 − θ1
−H21

]
, u2 =

[
−H12

H11 − θ2

]
∈ C2×1, (25)

pi =
ui

(uH
i Giui)

1
2

∈ C2×1, i = 1, 2. (26)

Along with this, the separated signals are updated by Y1:2,• ←
PY1:2,•. The proposed ISS2 is summarized in Algorithm 1.

4) Optimization of P for d = 1 (ISS1 case): When d = 1,
p1 = G

− 1
2

1 gives a global minimum of (23). The obtained ISS1

is identical to the conventional ISS1 [32]. Our new derivation
has an advantage of providing a systematic way to discuss
ISSd, which enabled us to generalize ISS1 to ISS2 as above.

IV. RELATION TO PRIOR MM+BCD ALGORITHMS

Iterative projection (IP) is a family of MM+BCD algorithms
that optimize several rows of W in each iteration with closed-
form update formulas. So far, IP1 [20]–[22] and IP2 [27] (see
also [28]–[31]) have been developed as members of IP.

IP1 is an MM+BCD that updates Λ → w1 → · · · → wm

one by one. The update rule for Λ is given by (7) and that for
w` := WH

`,• can be developed as

u` ← (WV`)
−1e` ∈ Cm×1, w` ←

u`

(uH
` V`u`)

1
2

∈ Cm×1,

where V` is defined by (10) and e` is the `-th column of Im.
IP2 is an MM+BCD that updates Λ → [w1,w2] → · · · →

[wm−1,wm] one by one (when m is even), which improves
IP1 (see, e.g., [28]–[31] for details).

Recently, an advanced algorithm called iterative projection
with adjustment (IPA) was proposed [30]. However, unlike IP
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Algorithm 1: IVA by ISS2

Input: X [k] ∈ Cm×n (k = 1, . . . ,K)

1 Initialize W [k] as a whitening matrix for k = 1, . . . ,K.
2 Y [k] ←W [k]X [k] for each k = 1, . . . ,K.
3 repeat // outer MM loop

4 Λij ← ϕ′(‖yij‖2 + ε) / (‖yij‖2 + ε), where
ε = 10−10 is added to improve numerical stability.

5 for ` = 1, . . . , m2 do // inner BCD loop

6 for k = 1, . . . ,K do
7 /* Update Y

[k]
3:m,• ∈ C(m−2)×n

*/

8 for i = 3, . . . ,m do

9 G
[k]
i = 1

2nY
[k]
1:2,• diag(Λi,•) (Y

[k]
1:2,•)

H

10 g
[k]
i = 1

2nY
[k]
1:2,• diag(Λi,•) (Y

[k]
i,• )H

11 Y
[k]
i,• ← Y

[k]
i,• − (g

[k]
i )H(G

[k]
i )−1Y

[k]
1:2,•

12 /* Update Y
[k]
1:2,• ∈ C2×n

*/

13 for i = 1, 2 do
14 G

[k]
i = 1

2nY
[k]
1:2,• diag(Λi,•) (Y

[k]
1:2,•)

H

15 Update P [k] ∈ C2×2 using (24)–(26).
16 Y

[k]
1:2,• ← P [k]Y

[k]
1:2,• ∈ C2×n

17 /* Permute rows */

18 Λ← Π2Λ, where Π2 is defined as (17).
19 Y [k] ← Π2Y

[k] for k = 1, . . . ,K.

until some convergence criterion is met
Output: Y [k] ∈ Cm×n (k = 1, . . . ,K)

and ISS, no (fully) closed-form update formula has existed for
IPA, because it requires a root-finding algorithm (and for this
purpose the Newton-Raphson method is used [30]). Although
IPA is important, we will not compare it with IP and ISS in
our experiments, since we are focusing on such methods with
fully closed-form update formulas.

V. TIME COMPLEXITY ANALYSIS

The computational time complexity of ISS2 per MM itera-
tion is dominated by

• the computation of (G
[k]
i , g

[k]
i ) for each i = 1, . . . ,m and

loop ` = 1, . . . , m2 , which costs O(Km2n); and
• the computation of Y [k], which costs O(Km2n).

Thus, ISS2 has the time complexity of O(Km2n), which is
the same as that of ISS1. For comparison, the time complexity
of IP1 with d ∈ {1, 2} per iteration is dominated by (e.g., [30])

• the computation of covariance matrices V [k]
1 , . . . , V

[k]
m ∈

Sm+ , which costs O(Km3n); and
• the computation of updating W [k], which costs O(Km4).

Thus, IPd (d ∈ {1, 2}) has the time complexity of O(Km3n+
Km4), which is m times larger than ISSd with d ∈ {1, 2}.

VI. EXPERIMENTS

We compared the performance of our proposed ISS2 and
conventional ISS1, IP1, and IP2 when applied to convolutive
blind source separation (BSS) in the short-time Fourier trans-
form (STFT) domain [36], where K and n correspond to the
numbers of frequency bins and time frames, respectively. This
setting is very common in audio source separation [36].

Dataset: We generated synthesized convolutive mixtures of
m ∈ {4, 6, 8, 10} speech signals. The signals were captured
by a circular array with m microphones and a radius of 5
cm. We obtained speech signals from the TIMIT corpus [37]
and concatenated them so that the signal length exceeded 10
seconds. The obtained signals were normalized to have unit
power. To obtain acoustic impulse responses (AIR), we used
the pyroomacoustics Python package [38] and simulated
100 rectangular rooms. The rooms were 5 to 8 m wide and 3 to
5 m high. The arrays were placed in the center of the rooms
at a height of 1 m. The speech sources were randomly placed
in the room at a height of 1 m, provided that the distances
from the array center and the walls were at least 1 m. The
reverberation times (T60) ranged from 250 to 400 ms.

Evaluation criterion: We measured the signal-to-distortion
ratio (SDR) [39] between separated signal ŝ and oracle rever-
berant speech signal s at the first microphone. The SDR we
used here is sometimes called the scale-invariant SDR [40]
and defined as SDR [dB] = 10 log10

‖αs‖22
‖ŝ−αs‖22

with α = ŝ>s
‖s‖22

.
Other conditions: The sampling rate was 16 kHz, the STFT

frame size was 4096 (256 ms), and the frame shift was 1024
(64 ms). We assumed a Laplace distribution, i.e., (5) with
β = 1, for the separated signals. We initialized W [k] as the
whitening matrix D−1/2UH using the eigenvalue decomposi-
tion UDUH = 1

nX
[k](X [k])H for each k = 1, . . . ,K. After

separation, the scale ambiguity of IVA, i.e., (2), was restored
based on the minimum distortion principle (MDP) [41] (see
also [42, Section 2.2] for the details of MDP).

Experimental results: Figure 1 shows the SDR improve-
ment obtained by each method. As we desired, the conver-
gence of the proposed ISS2 is much faster than ISS1 and IP1

and comparable to IP2 (note that the SDR curves of IP2 and
ISS2 almost overlap), which clearly shows the effectiveness of
our approach. Since the time complexity of ISS2 is m times
smaller than IP2, one might expect that the runtime of ISS2 to
reach convergence is shorter than that of IP2; but this was not
the case in our experiment with our Python implementation
where the runtime of ISS2 was slightly inferior to that of IP2.
This implementation issue is an important future work.

VII. CONCLUSION

As BCD algorithms for the MM-based IVA, IP1, IP2, and
ISS1 had been developed. We here extended ISS1 to ISS2 that
updates two columns of the mixing matrix A := W−1 in each
BCD iteration. Our ISS2 simultaneously achieves both (i) the
small time complexity of ISS1 per MM iteration and (ii) the
fast convergence behavior of IP2, which was confirmed by the
numerical experiments.
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Fig. 1: The SDR improvement (∆SDR) from the initial SDR
as a function of the MM iteration. The SDRs were averaged
over 100 samples. The average signal length was 13.3 sec.
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