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Abstract—Optimal performance of many speech enhancement
methods is bound to an accurate noise power-spectral density
(PSD) estimation. While for stationary noises, such as the white
Gaussian or car noise, several approaches have proven themselves
to perform sufficiently good, non-stationary noise types like the
wind noise are more challenging. In the binaural setting and
in multichannel systems, the speech-blocking method is essential
to recent developments for non-stationary noise estimation. It
critically requires information of the acoustic channel transfer
function from source to listener. In this paper, we propose
such noise-subspace approach for wind-noise PSD estimation,
which relies on data-driven blind channel identification in speech
presence and on a-priori acoustic channel information (i.e., the
steering preset) in speech pause, where the smooth transition of
both is controlled by a-priori SNR. The algorithm is designed for
entire online operation based on the current noisy frame input. It
improves on straightforward recursive subspace analysis and on
established single-channel estimation in the wind-noise scenario,
while dealing well with speech presence or babble noise too.

Index Terms—binaural speech enhancement, noise estimation

I. INTRODUCTION AND RELATION TO PRIOR ART

Acoustic noise reduction is vital to hands-free and hand-

held speech communication [1], [2], hearing aids [3] or true-

wireless stereo headphones. Typical single-channel algorithms

include the spectral-subtraction [4] and numerous minimum-

mean-square error approaches mostly operated with decision-

directed a-priori SNR [5]–[8]. From the range of multiple-

input/single-output algorithms, the minimum-variance distor-

tionless response beamformer and the multichannel Wiener

filter are frequently used for speech enhancement [9]. The

subclass of binaural algorithms for hearing-aids derives with

a further constraint for spatial-cue preservation [10]–[14].

Many of the aforementioned filters require an estimation of

the time-varying noise PSD, which is generally a challenging

task, but more so in wind noise conditions as shown in this

paper. In the single-channel domain, the estimators based

on speech-presence probability [15] and minimum statistics

[16] are landmarks. In multichannel and binaural applications,

recent developments have relied on the idea of target blocking

for noise estimation. To this end, [17] uses demixing based

on blind source separation (BSS) to create speech and noise

references. A BSS approach with directional support was

proposed in [18]. Another method for target blocking relies

on signal-subspace analysis [19], [20] and the formation of

its orthogonal complement as the noise subspace [9], [21].

The variant for maximum noise-to-speech-ratio [22] directly

optimizes for the noise reference. Signal- and noise-subspace

techniques for speech blocking were compared in [14].

Advances in deep neural networks (DNNs) have also shown

promising results in terms of online speech enhancement

[23]. While seminal approaches still rely on an external noise

reference [24], recent end-to-end DNNs obtain a target speech

estimate with an internal noise reference [23]. Hardly any

approaches deliver an explicit noise PSD estimate [25].

This contribution picks up the signal-subspace analysis for

target blocking to create a noise reference. It reveals issues

with the online processing of time-varying conditions and the

scenario appears hard for fixed parameter tuning. We therefore

deliver a sophisticated architecture consisting of two connected

recursions for online subspace-analysis with adaptive stepsize

based on SNR. Low SNR activates a steering preset for target

blocking in front of the listener, while high SNR invokes an

identification of the speech transfer function.

The paper is structured as follows: Sec. II declares the bin-

aural signal model and reviews speech-blocking-based noise

PSD estimation in batch and online form. Sec. III analyzes

a fixed-stepsize online processing for detail, while Sec. IV

deduces our evolution using SNR-based control and steering

preset. Secs. IV and V demonstrate improvements for wind

noise estimation, before Sec. VI concludes.

II. BINAURAL SIGNAL MODEL AND SPEECH-BLOCKING

Fig. 1 introduces our binaural signal model. Clean speech

di(n)=s(n)∗hi,n, i∈{l, r}, at left and right ears results from

convolution of the single-source signal s(n) at sampling time

n with head-related impulse responses (HRIRs) hi,n. Noisy

observations yi(n)=di(n)+ni(n) are buffered and after short-

time Fourier transformation (STFT) represented with a mul-

tiplicative transfer-function as Yi(k,m)=Hi(k,m)S(k,m)+
Ni(k,m) at discrete frequency k and frame m. Theses indices

are just kept where necessary and otherwise dropped.
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Fig. 1: Binaural signal model with noise PSD estimation.
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Considering independent noise, the noisy-speech covariance

matrix Φyy=Φdd+Φnn composes of the covariance matrices

of clean speech and noise. All covariances are defined similar

to Φyy = E{YY
H} using expectation. Based on the single-

source model, the clean-speech covariance Φdd = Φs HH
H is

a rank-1 matrix with the clean-speech PSD Φs of the source

and the acoustic transfer functions (ATF) H= (Hl Hr)
T . In

addition, in our binaural configuration with head shadowing

and wind noise, we can use an assumption of uncorrelated

left and right noise [26], [27] in form of a diagonal noise

covariance Φnn =Φn I , where I is the identity. The latter is

debatable regarding the implication of equal noise PSD Φn at

the microphones, which is currently somewhat necessary for

our low-complexity design. The single noise PSD value per

frequency is then subject to estimation from the noisy speech

Y=(Yl Yr)
T for application in speech enhancement.

A. Noise Estimation by Dominant-Eigenvector Decomposition

To prepare our derivation of proposed noise PSD estimators

using multichannel signals Y, we briefly recall the steps

frequently taken for batch estimation of the noise PSD Φn.

A maximum-SNR problem can be defined [19], [22] as

wMaxSNR = argmax
w

w
H
Φddw

wHΦnnw
= argmax

w

w
H
Φyyw

wHΦnnw
(1)

for each frequency and with complex weights w. The solu-

tion to this cost function obviously can be restated as the

dominant generalized eigenvector wMaxSNR of the matrix

pair (Φyy,Φnn), which in turn can be resolved by standard

procedures. The resulting weights can be converted [19], [20]

to an estimation of normalized ATFs, i.e., Ĥ = ΦnnwMaxSNR

and ||Ĥ|| = 1. The same end also can be reached directly by a

maximum-likelihood blind channel identification [27] instead

of SNR maximization and weight conversion.

Using ATFs H, a speech-blocking matrix B is frequently

determined in the context of generalized sidelobe cancellation

[19], [20], [28] and generally in the field of microphone

array processing [9] as the orthogonal complement B= I −
H(HH

H)−1
H

H . The blocking operation then delivers a noise

reference Ñ=B
H
Y and eventually a noise PSD estimate Φ̂n

by element-wise rectification and square-averaging of Ñ.

B. Noise PSD Tracking with Fixed-Stepsize (FS)

Our works seeks a light binaural variant of this dominant-

eigenvector-based noise PSD estimation for adaptive online

processing in hearing aids. We therefore accomplish a recur-

sive estimation of the potentially time-varying noisy micro-

phone covariance matrix, here with fixed stepsize αy, as

Φ̂yy(m) = (1− αy) · Φ̂yy(m−1)+αy ·Y(m)YH(m) . (2)

Temporal updates of its dominant eigenvector are then de-

termined efficiently by the power iteration as ŵMaxSNR(m)=
Φ̂yy(m) ŵMaxSNR(m−1) constrained to unit-norm ŵMaxSNR.

With Φnn≈Φn I according to our binaural signal model, we

immediately have Ĥ(m)=ŵMaxSNR(m).
For the binaural case at hand, instead of a blocking matrix,

a vector H⊥(m) = (H∗

r −H∗

l )
T composed from the elements

TABLE I: Development and test-phase data composition.

phase target signal noise type SNR data status

dev-1 - wind −∞ development

dev-2 speech + COD sensor 30 dB development

test-1 speech wind 5 dB test

test-2 speech babble 5 dB test

of H(m) already meets the requirement of orthogonality with

H(m). On this basis, we can accomplish speech blocking by

means of the cross relation operation [14] for obtaining a noise

reference as Ñ = Ĥ
H
⊥
Y = Ĥr Yl − Ĥl Yr.

Eventually, the desired noise PSD estimation can be com-

puted online from the squared rectified noise reference as

Φ̂n(m) = (1− αCR) · Φ̂n(m− 1) + αCR · |Ñ(m)|2 (3)

with stepsize αCR. In conclusion, this online algorithm termed

fixed-stepsize (FS) adaptive estimator is characterized by two

hyperparameters, αy and αCR, to control its adaptivity.

III. ANALYSIS OF THE “FS” NOISE-PSD ESTIMATION

For analysis we construct an acoustic scenario with various

challenges. A sequence of cases comprising two development

and two test phases is illustrated in Fig. 2 and described in

Table I. Speech is used from the TIMIT database [29] and

wind noise is generated according to [26]. A continuous sensor

noise at about 30 dB below the speech level is further added

in all phases including initialization. For reference, the time-

varying clean speech PSD Φdr
(m) of the right ear and the

oracle total-noise PSD Φn(m) are assessed before the mixing

by recursive averaging and shown in the diagram. Additionally,

a challenging sudden change-of-direction (COD) of the spatial

location of the speech signal from θ1=−45◦ (front left of the

listener) to θ2=45◦ (front right) is embedded into the dev-2

phase and marked by the dashed vertical line.

Fig. 2 then demonstrates issues with the FS-based noise

PSD estimation Φ̂n(m) for choices of “slow” αy,1 = 0.02
and “fast” αy,2=0.3, while αCR=10−1.5 in both cases. All

PSDs (oracle and estimated) are depicted per frame index and

averaged along the entire frequency range. We observe

• noise PSD underestimation in noisy dev-1, test-1, test-2,

• with the underestimation more pronounced for the faster

αy,2 due to short-time noise correlation in Φ̂yy(m),
• noise-estimation hangover (thus noise overestimation) at

the beginning of the high-SNR speech phase dev-2,

• overshooting noise estimation at the COD with the slow

αy,1, indicating strong speech leakage into Φ̂n(m).

Any speech enhancement on the basis of the misestimated

noise PSD would clearly turn out very unreliable regarding

the preservation of desired speech and the suppression of

undesired noise. Noise overestimation through dev-2 would

result in speech attenuation, while noise underestimation in

dev-1 will turn out as unsatisfactory noise filtering.

To improve, we first restrict ourselves to the dev-1 noise

phase and systematically evaluate the log-spectral error LSE=
10 log10(Φn/Φ̂n) between oracle and estimated noise PSD

(here assessed with equal stepsizes αor = αCR for compa-

rability). The mean and standard deviation of the LSE across
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Fig. 2: Issues with noise PSD estimation by the ”FS” (fixed-stepsize) online estimator, αCR = 10−1.5.
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Fig. 3: Improved noise PSD estimation by the ”AS” (adaptive-stepsize) online estimator, αy = 0.3.

frames and frequencies for 100 wind-noise realizations are

listed in Tabs. II and III, respectively. The stepsize αy of

Eq. (2) is varied linearly, whereas αCR of Eq. (3) is varied

logarithmically to accommodate their respective effects on

the processing. It is apparent from Tab. II that there is a

dependency primarily of the bias (mean error) of the noise

PSD with αy and not so much with αCR. Conversely, it turns

out from Tab. III that the standard deviation of the noise

estimation is mainly steered by αCR and hardly by αy.

As a result, we might optimize the stepsizes αy and αCR

separately for low bias and low standard deviation of the noise

estimator. However, it will be difficult to accommodate the

conflicting requirements towards the speech phase dev-2 with

any choice of the fixed stepsize. While slower stepsize αCR

would reduce standard deviation in dev-1, the hangover time

after dominant noise in dev-1 will further extend into dev-2

of Fig. 2. Slower stepsize αy would reduce estimation bias

in dev-1, but trigger yet harsher speech leakage in the case of

rapidly changing ATF due to COD in the middle of dev-2. For

overall more satisfactory operation, we must therefore pursue

a dynamical solution for controlling stepsize.

TABLE II: Bias of LSE of Φ̂n estimate by FS.

αy \ αCR 10−0.5 10−1 10−1.5 10−2 10−2.5

0.1 1.1 dB 1.0 dB 0.9 dB 0.8 dB 0.8 dB

0.2 2.0 dB 1.9 dB 1.8 dB 1.7 dB 1.6 dB

0.3 2.9 dB 2.7 dB 2.6 dB 2.5 dB 2.4 dB

TABLE III: Standard deviation of LSE of Φ̂n estimate by FS.

αy \ αCR 10
−0.5

10
−1

10
−1.5

10
−2

10
−2.5

0.1 1.8 dB 1.1 dB 0.7 dB 0.6 dB 0.6 dB

0.2 2.0 dB 1.1 dB 0.7 dB 0.6 dB 0.6 dB

0.3 2.2 dB 1.2 dB 0.8 dB 0.7 dB 0.7 dB

IV. PROPOSED ADAPTIVE STEPSIZE “AS” TRACKING

Based on the observed challenges with fixed-stepsize online

subspace tracking in dynamical ATF conditions and with

speech presence/absence or time-varying SNR, we propose

an evolution of the noise PSD estimation (with comparable

complexity as FS) in which the subspace tracking pertains to

further regularizations according to SNR. Specifically,

• we take example of a filtered subspace analysis in [30]

to substitute our fixed-stepsize tracking with an adaptive

time-varying stepsize computation according to SNR

• and we further embed regularization in form of a steering

preset in low SNR when the data-driven subspace analy-

sis otherwise tends to random or leans on undesired short-

time correlation and thus creates estimation variance.

The former intends fast and continual tracking of time-varying

ATFs in situations with high SNR (speech presence). The latter

is meant to provide for a non-adaptive steering vector Hpre

in cases of very low SNR (speech absence). It refers to any

fixed steering, for instance, toward the front of the listener and

substitutes the critical data-driven subspace analysis. Smooth

transition of both is to be controlled adaptively with SNR.

A. Definition of the Algorithm

Those ambitions regarding improved noise-estimation accu-

racy can be met by a two-stage system in Fig. 4. A preliminary

noise estimate Φ̂′

n is here obtained by fixed-stepsize subspace

tracking with an FS estimator or might be obtained by another

noise estimator suitable for time-varying wind noise conditions

at hand. The preliminary noise estimate is then plugged into

a spectral-subtraction form of a Wiener filter, i.e.,

G = max

(
Φ̂ylyl

+ Φ̂yryr
− 2 · ξ · Φ̂′

n

Φ̂ylyl
+ Φ̂yryr

, 0

)
, (4)
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Fig. 4: SNR-adaptive noise PSD estimation architecture.

where the two noisy speech PSDs Φ̂yiyi
, i ∈ {l, r}, can

be used from the main diagonal of (2) and computed with

equal stepsizes αy =αCR for successful noise subtraction in

the numerator of (4). For the entire system, we can report

somewhat better utility of slow adaptation of the preliminary

noise PSD and the Wiener filter (e.g., αCR =10−2) in order

to impose stable a-priori SNR conditions for the second,

adaptive-stepsize estimator to follow. A noise-overestimation

factor ξ (selected according to Tabs. II and III to compensate

for estimation bias and variance on the preliminary noise

estimate) further enhances the Wiener filter computation.

The spectral filter G then directly supports a second noise

PSD estimator to characterize it by an adaptive stepsize for

fast and robust tracking. As a further resource for the second

stage we prepare a definition of our steering preset as Hpre=
(1 1)T in front of the listener and bring it into covariance

form as Φyy,pre=HpreH
H
pre. On this basis, we can define our

adaptive-stepsize (AS) noise estimation module in Fig. 4 by a

set of two simple connected recursions, firstly

Φ̂
′

yy,A(m) = (1−αA) Φ̂yy,A(m−1) + αA

Y(m)YH(m)

σ2
y

(5)

with the adaptive stepsize αA = αy G to activate the current

input data Y in case of higher SNR and to forget the memory

term Φ̂yy,A(m−1). This intermediate result Φ̂
′

yy,A(m) is then

handed over to the second recursion

Φ̂yy,A(m) = (1−αpre) Φ̂
′

yy,A(m) + αpre Φyy,pre , (6)

which introduces the steering preset as a regularization to the

data-driven computation of (5). The stepsize αpre=αy (1−G)
is complementary with αA. Note that the normalization σ2

y in

(5) is responsible to balance the weight of the input signals

with the steering preset for any scaling of the input.

Assuming high SNR, then, specifically, the second recur-

sion will discard the steering preset and thus connect the

intermediate output of the first recursion to the final output

Φ̂yy,A(m). In this case, with typically a large αy configured as

the maximum stepsize of the entire process, the two connected

recursions deliver a rapid update of the data covariance Φ̂yy,A

for time-varying ATF conditions.

Assuming low SNR, the first recursion will obviously dis-

card the noisy data Y and instead pass on the memory term

Φ̂yy,A(m−1) to the intermediate output. The second recursion

with complementary stepsize will now mix the steering preset

into the final output and over time forget the intermediate

data-driven input Φ̂
′

yy,A(m). The steering preset therefore

dominates the final output in low SNR conditions as desired.

In mixed conditions with mid-range SNR, the two connected

recursion will seek a tradeoff between adaptivity to the data

and regularization in form the steering preset.

Conventional power iteration for EVD is then performed

on the final output Φ̂yy,A and the resulting ATF estimation

ĤAS(m) is handed over to cross relation [14] and Eq. (3) for

obtaining a noise reference and a noise PSD (cf. Sec. II).

B. Illustration of the Adaptive Mechanism

We return to the acoustic configuration of Fig. 2 for first

judgement regarding the desired improvement. In line with

arguments throughout the algorithm definition, we choose the

fixed parameters αy = 0.3 and αCR = 10−2 in the fixed-

stepsize, and αy =αCR =0.3 in the adaptive-stepsize part of

the algorithm. The filter G inbetween as shown in (4) relies on

squareroot-Hann windowed FFT processing of length 512 with

50% overlap and bias correction ξ=2 and is finally averaged

across frequency. Fig. 3 then depicts clearly improved noise

estimation in dev-1 and test-1 phases, i.e., the estimated noise

PSD coherently following the dynamical evolution of the true

noise PSD. The dev-2 phase considerably improves on the

former hangover from dev-1 and on the overshooting noise

PSD with COD in Fig. 2. The test-2 phase, expectedly, shows

a noise underestimation due to the inherent coherence of left

and right binaural babble noise signals, which would require

a framework with additional noise covariance modeling and

computationally more demanding generalized EVD.

V. EXPANDED EVALUATION AND COMPARISON

We rely once more on the acoustic configuration of Figs. 2

and 3 to evaluate across various global SNR (averaged left

and right channel SNR) and to compare these contenders:

• an αy=0.3, αCR=0.3 fast fixed-stepsize (FS) recursion

• the proposed adaptive-stepsize (AS) algorithm

• the state-of-the-art 1-channel SPP-based estimator [15].

As a metric for comparison of the noise PSD estimation, we

here suggest a speech-conditioned log-spectral error

∆n,dB=
1

κM

M∑

m=1

κ∑

k=1

10 log10

(
Φ̂n(k,m)+Φ̄d(k,m)

Φn(k,m)+Φ̄d(k,m)

)
(7)

with the speech PSD Φ̄d=(Φdl
+Φdr

)/2 to put the noise PSDs

appropriately into perspective, for instance, to invalidate small

noise estimation errors in the presence of dominant speech.

Averaging takes place across all frequencies k, frames m, and

10 realizations of each signal phase. Fig. 5 shows the resulting

mean errors (markers) and standard deviations (error bars) for

dev-1/2 and test-1/2 phases in the subfigures.

It turns out in the wind-noise dev-1 phase that the 1-channel

SPP estimator exhibits large underestimation bias, since its

structure of several recursions is not well suited for harsh

non-stationarity. The FS noise-subspace algorithm obviously

reduces the variance of the estimation at the cost of additional

bias. The proposed AS algorithm, in turn, manages to strongly

enhance the estimation variance and almost eliminate the bias.
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Fig. 5: Evaluation of noise PSD estimation related to Fig. 3.

The same trends translate to the mixed speech-and-noise test-

1 phase, where the absolute range of bias and variance is

compressed due to speech conditioning of the spectral error

metric. In the dev-2 speech phase, estimation bias and variance

of all contenders is minor under the considered metric. The

babble noise estimation in the test-2 phase shows only slight

improvements with AS, however, appears at least robust in our

context of optimized wind noise estimation.

VI. CONCLUSION

Our study was concerned with online noise PSD estimation

for binaural speech enhancement in time-varying conditions.

Straightforward translation of a common subspace technique

to a fixed-stepsize online tracking has revealed considerable is-

sues of bias and variance. We have thus proposed an adaptive-

stepsize estimator with SNR-based control and regularization

with steering preset. The evaluation proves enhanced perfor-

mance with moving sources and non-stationary wind noise.
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