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Abstract—In practice, hands-free devices commonly employ
low-cost electronic components. Unfortunately, the nonlinear
distortion arising from them affects the performance of acoustic
echo cancellers. To address this issue, this paper proposes a
new adaptive filtering algorithm based on nonlinear acoustic
echo cancellation (NAEC) framework for improving its echo
cancellation performance. The advanced method employs a novel
combination of an adaptive filter based on sub-filter and propor-
tionate adaptation, and presents an enhanced NAEC framework.
In addition to that, both convergence and steady-state analysis of
the proposed NAEC algorithm are presented. The performance
evaluation made in the presence of speech and colored noise
inputs has shown an average improvement of 3-4 dB compared
to the existing algorithms.

Index Terms—Adaptive filtering, nonlinear acoustic echo can-
cellation, functional link adaptive filtering, echo return loss
enhancement.

I. INTRODUCTION

The nonlinear distortion (NLD) generated by the low cost
loudspeakers, amplifiers in the hands-free devices will intro-
duce nonlinearity in the acoustic path between loudspeaker
and the microphone [1]. This hampers the job of acoustic echo
cancellation (AEC) framework in estimating the room impulse
response (RIR) of the acoustic echo path. As a result, the echo
cancellation performance of AEC is reduced. Hence nonlinear
AEC (AEC) algorithms based on state-space models [1],
kernel methods [2] were reported in the literature to mitigate
the effects of NLD on AEC in the RIR estimation. Similarly
a nonlinear post-processor based NAEC was proposed in [3]
to minimize the impact of NLD. As the name suggests, these
algorithms employ a nonlinear filter to cancel the NLD at the
output of AEC which can be used only for lower degree of
NLD. In addition to these NAEC methods, the functional link
(FL) based NAEC were proposed in [4], [5], [6] as a relatively
less complex alternative compared to the above said methods
using trigonometric functions as basis elements.

The algorithms proposed in [4], [5], [6] require more
adaptive parameters i.e., in terms of the length of the nonlinear
adaptive filter to be used with an increase in model order.
In addition to that, RIR estimation also needs an adaptive
filter with thousands of coefficients. As a result, the time
needed for iteration will increase which in turn will reduce
the convergence rate of NAEC [7]. The possible solution to
this problem is to use a lower model order for reducing the
length of nonlinear adaptive filter which will deteriorate the
NAEC’s ability in modelling NLD and linear adaptive filters

Fig. 1. Proposed nonlinear acoustic echo cancellation framework.

with shorter length which will lead to under-modelling of the
RIR [8].

From these observations, it can be concluded that an NAEC
with an improved convergence rate which can support in
estimating the RIR with thousands of coefficients and NLD is
needed.This paper intends to address this gap in the existing
literature related to the requirement of an improved conver-
gence rate while increasing the overall performance of the
NAEC. In this paper we propose to address this gap with
the help of an improved FL based NAEC framework. The
contributions in this paper are as follows.

In this paper to increase the convergence rate of the NAEC
we propose to adopt the sub-filter approach through which
the linear and nonlinear filters are decomposed into a finite
number of sub-filters. As a result, the computation time needed
for an iteration gets reduced which will aid in improving the
convergence rate.Then the sub-filters will be updated using
mixed error to guarantee a better balance between convergence
and steady-state performance in the resulting NAEC frame-
work. Finally, proportionate filtering is employed to improve
the convergence further.

II. PROPOSED NONLINEAR AEC FRAMEWORK

Fig.1 depicts the proposed nonlinear AEC framework
wherein x(n) is the far-end input sample at nth time instant.
The linear wk and the non filtering blocks w̄k are fed with
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the x(n) through the input buffer x (n) of length n1 defined
as

x (n) = [x (n) , x (n− 1) , x (n− 2) , ..., x (n− n1 + 1)]T .
(1)

To model the NLD in d(n), the samples of x (n) will be
nonlinearly expanded using functional expansion block as

x(n) ≜
[
a0{x(n)}, . . . ,an1−1{x(n− n1 + 1)}

]T
. (2)

In Eq.(2), vector ai{x(n− i)} (for i ∈ {0, 1, . . . , n1 − 1}) is
an M length functional expansion of sample x(n− i).

ak {x (n− i)} ≜ [b0 {x (n− i)} , ..., bM−1 {x (n− i)}]T ,
(3)

where

bj {x (n− i)} ∆
=

{
sin {kπx (n− i)} , j = 2m− 2,
cos {kπx (n− i)} , j = 2m− 1.

m = 1, 2, ...,M.
(4)

As a result length of x(n) will be n2 = n1M . The input
buffer x(n) (resp. x(n)) of length n1 (resp. n2) is partitioned
in s blocks, referred to as sub-filters, whose length is n3 =
n1/s (resp. n4 = n2/s). Then the response of wk block to
xk (n) is represented as

yk (n) = wT
k (n)xk (n) , k = 0, 1, ..., s− 1. (5)

Similarly, the response of w̄k (n) to x(n) will be

ȳk (n) = w̄T
k (n) x̄k (n) , k = 0, 1, ..., s− 1. (6)

Then the error in the proposed NAEC algorithm will be
derived as follows.

Case 1: The error line passing in between wk (n) and
w̄k (n) block represents the error in case1 expressed as

e0 (n) = d (n) − wT
0 (n)x0 (n)− w̄T

0 (n) x̄0 (n) , (7)

ek (n) = ek−1 (n)−wT
k (n)xk (n)−w̄T

k (n) x̄k (n) , ∀k ̸= 0.
(8)

The error in the 0-th sub filtering block is calculated using the
current sample of the desired signal, and the error obtained is
then used to find the error in the subsequent sub-filter blocks,
as shown in Fig. 1. Here, the sub-filter blocks wk and w̄k are
updated with their corresponding error signal ek (n) without
waiting for error to be computed in successive blocks.

Case 2: Here, the dotted line originating from the last sub-
filter error in Fig. 1, i.e., es−1 (n) and passing adjacent to the
filter blocks, depicts the case 2 error expressed as

ec (n) = d (n)−
s−1∑
k=0

wT
k (n)xk (n) + w̄T

k (n) x̄k (n). (9)

The method in case 1 helps to increase the convergence rate
at the cost of reduced misadjustment performance. Similarly,
the case 2 method offers better misadjustment at the expense
of a reduced convergence rate than case 1

e (n) = (1− β) ek (n) + βec (n) , (10)

where the term β = log10 |ek (n)/ec (n)| , n → ∞ [8]
referred to as the trade-off parameter helps to maintain the

right balance between faster convergence offered by case 1
error and better steady-state performance of case 2 error.
The sparseness in the RIR and x̄ (n), necessitated the use of
proportionate approach in NAEC as it weighs the coefficients
independently based on their magnitude [9] resulting in

wk (n+ 1) = wk (n) +
µR1k,nxk (n) e (n)

xT
k (n)R1k,nxk (n) + ε

, (11)

where k = 0, 1, ...s−1 and ε denotes the regularization factor.
The term R1k,n in (11) denotes the proportionality matrix for
the k-th linear block [10]

R1k,n = diag {r1k,1(n)1p, r1k,2(n)1p, ..., r1k,N1
(n)1p} ,

(12)
where N1 = n3/f1 denotes the number of groups into which
the matrix R1k,n of the linear sub-filter is sub-divided, f1
denotes the length of each group and

r1k,j(n) =
1− α

2n3
+

(1 + α)∥wj (n)∥2

2f1
N1∑
i=1

∥wi (n)∥2

, j = 1, ..., N1. (13)

where α denotes the proportionality constant. Similarly, the
weight update of nonlinear block shall be

w̄k (n+ 1) = w̄k (n) +
µ̄R2k,nx̄k (n) e(n)

x̄T
k (n)R2k,nx̄k (n) + ε

, (14)

where k = 0, 1, ...s − 1. The term R2,k denotes the propor-
tionality matrix of the k-th block

R2k,n = diag {r2k,1(n)1p, r2k,2(n)1p, ..., r2k,N2
(n)1p} ,

(15)
where 1p denotes the vector of ones with length p and N2 =
n4/f2 denotes the number of groups into which the matrix
R2k,n of the nonlinear sub-filter is sub-divided, f2 denotes
the length of each group and

r2k,j(n) =
1− ᾱ

2n4
+

(1 + ᾱ)∥w̄j (n)∥2

2f2
N2∑
i=1

∥w̄i (n)∥2

, j = 1, ..., N2 (16)

where ᾱ denotes the proportionality constant of the nonlinear
filtering block. The expressions in (11) and (14) will represent
the new weight update expressions in the proposed NAEC
algorithm.

A. Convergence analysis

In this section, the analysis is presented with the following
assumptions considering RIR to be first order Markov model:
A1. The input and the noise xk(n), v (n) are uncorrelated

zero mean Gaussian random processes with variance
σ2
xk
(n), σ2

v(n) respectively.
A2. The weight deviation vector Qk(n) and xk(n) are

statistically independent.
The unknown echo path d (n) can be expressed as [8]

d (n) = gT
k (n)xk (n) + v (n) , (17)

where v (n) and gk denotes the noise and the Wiener optimum
solution in the kth block, and

gk (n+ 1) = γgk (n) + tk (n)
√
1− γ2, (18)
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where tk (n), γ(0 < γ < 1) denotes the zero Gaussian
distribution and the innovation parameter respectively. Since,
the term ek (n) ≪ ec (n), the error in (10) can be modified
as

e (n) = d(n)−

(
s−1∑
k=0

wT
k (n)xk (n) + w̄T

k (n) x̄k (n)

)
.

(19)
Now by substituting

p =
s−1∑
k=0

w̄T
k (n) x̄k (n), (20)

and (17) in (20), the error expression becomes

e (n) = QT
k (n)xk (n) + v (n)− p (n) , (21)

where Qk (n) denotes the weight deviation vector. Following
A2 the MSE in the proposed NAEC algorithm is

J = σ2
v (n) + σ2

xk
(n)E

[
QT

k (n)Qk(n)
]
+ σ2

p (n) , (22)

where σ2
v (n), σ

2
xk

(n) and σ2
p (n) in (22) denote the variance

of noise, input vector xk (n) and p (n), respectively. Then the
weight deviation vector Qk(n) can be updated as

Qk(n+ 1) = gk (n+ 1)−wk (n+ 1) . (23)

Substituting (18), (11) one can rewrite (23) in terms of
individual coefficients as

Qk,l(n+ 1) = Qk,l(n) + (γ − 1) gk,l (n) + tk,l (n)
√
1− γ2

−
[
v (n) +

u∑
l=1

Qk,l(n)xk,l (n)

] [
µ

rk,l(n)xk,l(n)

xT
k (n)R1k,nxk(n)+ε

]
−p (n)

[
µ

rk,l(n)xk,l(n)

xT
k (n)R1k,nxk(n)+ε

]
.

(24)
Taking the square of (24) along with the expectation on both
sides yields

E
[
∥Qk(n+ 1)∥2

]
= E

[
∥Qk(n)∥2

]
+ 2 (1− γ)σ2

t (n)

+
µ2σ2

xk
(n)(σ2

v(n)+σ2
p(n))

(σ2
xk

+ε)2
tr
{
E
[
R2

1k

]}
−2µ

[
∥QT

k (n)xk(n)∥2
]
tr{E[R1k]}

(σ2
xk

+ε)

+
µ2σ2

xk
(n)

(σ2
xk

+ε)2

[∥∥QT
k (n)xk (n)

∥∥2] tr {E [R2
1k

]}
.

(25)

By replacing E
[∥∥∥QT

k (n)xk (n)
∥∥∥2] with ζk in (25)

E
[
∥Qk(n+ 1)∥2

]
= E

[
∥Qk(n)∥

2
]
+ 2 (1− γ)σ2

t (n)

+
µ2σ2

xk
(n)(σ2

v(n)+σ2
p(n))

(σ2
xk

+ε)2
tr
{
E
[
R2

1k

]}
−2µE[ζk]tr{E[R1k]}

(σ2
xk

+ε)

+
µ2σ2

xk
(n)

(σ2
xk

+ε)2
E [ζk] tr

{
E
[
R2

1k

]}
.

(26)
Assuming that the algorithm converges, at steady state one has

lim
n→∞

E
[
∥Qk(n+ 1)∥2

]
= E

[
∥Qk(n)∥2

]
. (27)

Hence, (26) gets modified as

2 (1− γ)σ2
t (n) +

µ2σ2
xk

(n)(σ2
v(n)+σ2

p(n))

(σ2
xk

+ε)2
tr
{
E
[
R2

1k

]}
=

ζk

(
2µ tr{E[R1k]}

(σ2
xk

+ε) −
µ2σ2

xk
(n)

(σ2
xk

+ε)2
tr
{
E
[
R2

1k

]})
.

(28)
Simplifying (28)

ζk =
2 (1− γ)σ2

t (n) +
µ2σ2

xk
(n)(σ2

v(n)+σ2
p(n))

(σ2
xk

+ε)2
tr
{
E
[
R2

1k

]}
2µ tr{E[R1k]}

(σ2
xk

+ε) −
µ2σ2

xk
(n)

(σ2
xk

+ε)2
tr
{
E
[
R2

1k

]} .

(29)
As n → ∞ equation (29) results in a positive excess mean
square error provided

0 < µ <
2tr {E [R1k]} (σ2

xk
+ ε)

σ2
xk
(n)tr

{
E
[
R2

1k

]} . (30)

in ensuring the convergence of wk (n) in the mean square
sense.

III. RESULTS & DISCUSSION

A. Simulation setup

The performance of the proposed algorithm is validated us-
ing speech and colored noise signals as far-end input. Female
speech signal sampled at 16 kHz obtained from TSP database
[11] is used as far-end speech input. Similarly, the colored
noise input is derived by passing white noise signal through a
first order AR system given as g (z) =

√
1− θ2

/(
1− θz−1

)
with θ = 0.8. The RIR is simulated using the method of
images [12] with a sampling frequency of 16 kHz and a
reverberation time of T60 ≈ 120 ms with a length of 1000
samples. To simulate the NLD introduced by the loudspeakers
in hands-free applications, we use the sigmoidal nonlinear
function [6]

s̄ (n) = g

(
1

1 + exp [−ha (n)]
− 1

2

)
, (31)

where

a (n) =
3

2
x (n) − 3

10
x2 (n) . (32)

and g, h are the gain and the slope. The term h is taken as

h =

{
4, a (n) > 0,
1
2 , a (n) ≤ 0

(33)

The simulation parameters used are m = 5, s = 4, µ =
0.275, µ̄ = 0.55, ε = 0.01, α, ᾱ = 0, N1, N2 = 5 and
f1 = 50, f2 = 500. To measure the performance of the
algorithm echo return loss enhancement (ERLE) defined as
ERLE (n) = 10log10

{
E
[
d2 (n)

]/
E
[
e2 (n)

]}
, and percep-

tual evaluation of speech quality (PESQ) will be used as
performance metrics.
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Fig. 2. ERLE performance for (a) speech input, and (b) colored noise input
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Fig. 3. (a) mean ERLE for speech input, (b) PESQ score for speech input,
and (c) mean ERLE for colored noise input.

B. Speech signal input

d(n) is obtained by passing speech through (31) and con-
volving with RIR d(n). The echo component is maintained
at an SNR of 30 dB using white noise. Higher ERLE is
observed for the proposed NAEC compared to the existing
NAEC methods suggesting the improvement in performance
of the proposed NAEC. Similarly, Fig. 3(a)-3(b) depicts the
ERLE and PESQ performance for speech input at different
background SNR.

C. Colored noise input

Here, the desired signal is generated as mentioned in the
earlier experiment for the colored noise signal. Then the
white noise signal is added to it at an SNR of 30 dB.
An improvement in convergence and steady-state is observed
in Fig.2(a) in case of the proposed NAEC when compared

with [2], [4], [5], [6] validating the enhancements brought by
the proposed approach. Similarly, Fig. 3(c) depicts the mean
ERLE at different background SNR values. Also comparison
made between Case 1 in (7) and the proposed algorithm in
Fig.3(c) validates the improvement brought by the proposed
NAEC algorithm in terms of convergence and steady-state
performance.

D. Computational complexity

The proposed algorithm needs 7n1 + n2 + 8s − 1 mul-
tiplications and 5n1 + n2 + 9s − 3 number of additions
for the linear filtering block. Hence, it needs an additional
amount of n1 + 8s − 4 multiplications and 9s − 4 number
of additions compared to its recent functional links based
NAEC counterpart Full PFLAF [4]. Similarly, the nonlinear
filtering block needs 7n2 + n1 +9s+ n2s− 1 multiplications
and 5n2 + n1 + 10s + n2s − 3 number of additions. The
excess amount of computations needed is identical to the
linear case. From Fig. 2 one may conclude that the additional
calculations required by the proposed structure can be quite
reasonable, since it obtains a significant enhancement in ERLE
performance.

IV. CONCLUSION

In this paper, we presented a new NAEC algorithm based
on sub-filter based adaptive filtering technique to improve the
NAEC performance along with its convergence and steady-
state analysis. The proposed approach subdivides the linear
and nonlinear filter in the PFLAF algorithm into sub-filters for
improving its convergence rate, which are then updated using
proportionate filtering. The experimentation carried out using
speech and colored inputs under simulated NLD environment
have shown the improvement in the proposed algorithm over
its counterparts. The work was mainly focused on improving
the echo cancellation performance of NAEC in monophonic
communication scenario which can be extended further to the
stereophonic case as well. In addition to that, with the help of
improved nonlinear modelling the performance of the NAEC
can be improved further.

78



REFERENCES
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