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Abstract—This paper presents an acoustic echo canceller based
on a conditional Generative Adversarial Network (cGAN) for
single-talk and double-talk scenarios. cGANs have become a
popular research topic in the audio processing area because
of their ability to reproduce the finest details of audio signals.
However, to the best of our knowledge, no previous works have
used cGANs for Acoustic Echo Cancellation (AEC) in an end-to-
end manner. The generator of the proposed cGAN framework
is composed of a U-Net model able to synthesise the echo-free
signal. The synthesised signal, conditioned by the estimated echo
signal, is the input to the discriminator. The discriminator aims
to refine the synthesised signals to convert them as realistic as
possible. Experimental results have been carried out where the
proposed cGAN has been compared to a GAN and a U-Net model
in terms of echo return loss enhancement (ERLE) and perceptual
evaluation of speech quality (PESQ) score for different values of
Signal to Echo Ratio (SER). The cGAN outperforms the other
two models for both ERLE and PESQ, and presents PESQ scores
comparable to previous high-ranked echo cancellers of the AEC
Challenge 2021.

Index Terms—Acoustic echo cancellation, deep learning, U-Net,
conditional GANs

I. INTRODUCTION

The first Acoustic Echo Cancellation (AEC) systems were
developed by AT&T Bell Labs [1] and were based on the
model shown in Fig.1, where the AEC block was implemented
as an adaptive filter. The aim of AEC systems is to suppress
the undesired echo produced by the acoustic coupling between
a loudspeaker and a microphone, usually driven by the same
device. Traditionally, echo cancellation is accomplished by
identifying the room impulse response (RIR) between the
loudspeaker and the microphone denoted by h(n) in Fig.1, and
subtracting the estimated echo signal x(n)∗h(n) from the mi-
crophone signal y(n) in order to obtain the clean speech ŝ(n).
In practice, the canceller must also deal with non-stationary
scenarios, non-linear effects over the signals and possibly with
ambient noise denoted by v(n) in Fig.1. To combat these
impairments, residual echo suppressors (RES) [2] and voice
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Fig. 1: Model of an acoustic echo cancellation system.

activity detectors for the far-end and near-end signals [3] are
usually included in the AEC system design.

Recently, AEC systems based on artificial intelligence tech-
niques have outperformed classical methods based on adaptive
filters, specially when dealing with non-linear scenarios. In
2021 and 2022 Microsoft have been proposed three AEC
Challenges [4] where competing AEC systems have been eval-
uated against the same blind dataset by means of a perceptual
score [5]. Among the best solutions presented, on the one
hand there were works that used neural networks (NN) in
combination with adaptive cancellers to suppress the residual
echo [6]–[8], and, on the other hand, there were complete
end-to-end AEC solutions using deep learning models [9],
[10]. Both types of models were very diverse, such as Gated
Recurrent Units (GRU) [6], Deep Feedforward Sequential
Memory Networks (Deep-FSMN) [7], Gate Complex Convo-
lutional Recurrent Networks (GCCRN) [8] and Long Short
Term Memory (LSTM) networks [9], [10].

Apart from the solutions presented to the AEC Challenges,
other cancellers based on NN have been recently presented
[11]–[14]. In [11], the authors propose a multiscale atten-
tion neural network for echo cancellation as an end-to-end
implementation, which combines temporal convolutions to
transform waveform into spectrograms and attention blocks
to obtain features using LSTM units. In [12], a U-Net with
multiple encoders is built to suppress the residual echo.
Additionally, in [13], a very small network based on a densely-
connected multidilated DenseNet (D3Net) is implemented to
work in real time, eliminating the need of pooling thanks to
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their building blocks. More recently, the usage of Generative
Adversarial Networks (GANs) for echo cancellation has been
studied [14]. However, in this case, the generator, based on
a simple autoencoder, generates a TF mask used in a second
step to resynthesize the enhanced signal. Therefore, the GAN
developed in [14] is not able to map a noisy speech to a clean
signal in an end-to-end way.

Nevertheless, there is no definite AEC solution yet and
the problem remains open. Our contribution in this work is
the implementation of an end-to-end AEC system based on
a conditional Generative Adversarial Network (cGAN). The
cGAN is an improved GAN version that has outperformed
the state-of-the-art results for different tasks such as speech
enhancement [15], font recognition and generation [16] and
image generation [17], among others. However, to the best of
our knowledge, this is the first time that a cGAN is used for
acoustic echo cancellation. This sort of model is composed by
two blocks: the generator, in charge of processing the signal
recorded by the microphone y(n) and synthesising it into a
new signal without echo, ŝ(n), and the discriminator, which
ensures and improves the quality of the synthesised signal
ŝ(n). This last block determines if the input signal is real
or synthesised, what prevents the generator to give unrealistic
outputs, as will be detailed in the following section.

II. METHODS

The methodological core of the proposed end-to-end AEC
system is the cGAN shown in Fig.2. A detailed description of
the different blocks and processes is given in the following.

A. Audio signal processing

In the context of the AEC system shown in Fig.1, the
microphone signal y(n) can be expressed as a mixture of the
near-end speech s(n) and the far-end speech x(n) as:

y(n) = s(n) + f(x(n)) + v(n) , (1)

where v(n) denotes the ambient noise and f(x(n)) = d(n)
is the echo signal. Eq. (1) describes a generic double-talk
scenario when s(n) ̸= 0, or, alternatively a single-talk scenario
when s(n) = 0. Regarding the echo f(x(n)), it is usually
assumed to be a linear function such that d(n) = x(n)∗h(n).
However, we will also consider non-linear effects on x(n) as
clipping or impairments due to time-varying RIRs.

As shown in Fig.2, the input to the cGAN are segments
of 155ms long of the microphone signal, y(n), and the far-
end signal, x(n) (highlighted with a red box at the bottom
left of Fig.2). The first 135ms sample block corresponds
to previous information, the following 10ms block conforms
the frame of interest, while the last 10ms block is posterior
information. Subsequently, the respective Short Time Fourier
Transforms (STFT) of the 155ms segments are obtained using
a Hanning window of w = 318 samples and 75% overlap.
Then, normalised spectrograms Y (k,m) and X(k,m) of size
160 × 32 are obtained from y(n) and x(n), respectively.
The modules of the complex spectrograms are used as input
features to the proposed model. Note that during the inference

stage, the normalization process is inverted, obtaining the
predicted near-end speech spectrogram module, |Ŝ(k,m)|.
Then, the phase of y(n) is used to calculate ŝ(n) as the inverse
STFT of |Ŝ(k,m)|e∠j Y (k,m). From every prediction, just the
10ms frame of interest out of the 155ms segment is selected
to build the estimated near-end speech ŝ(n). In the case of
single-talk scenarios where s(n) is not present, the output of
the model would not have any speech content, although we
also denote their spectrogram as ŝ(n) for the sake of clarity.
To simplify the notation, we will omit the module operator
when referring to the spectrograms along the rest of the paper.

B. cGAN for echo cancellation

Given T = {(S1, X1, Y1), (S2, X2, Y2), ..., (SN , XN , YN )},
consisting of N triplets of clean spectrogram (S), noisy
spectrogram (Y ) and far-end spectrogram (X), the problem
of echo cancellation is to find a mapping f(Y ) : Y 7−→ S.
Conforming to GAN’s principle, the cGAN proposed has
its generator (G) tasked for the echo-free mapping and a
discriminator (D) to refine the synthesised signals. However,
in the proposed framework, G and D receive some additional
conditioning input information to control the output. Once
presented Y together with the echo representation X (the
conditional information), G produces the enhanced signal
Ŝ = G(Y,X). Then, the discriminator (D) receives a pair
of signals as input, {S ∪X} and {Ŝ ∪ X}, and D learns to
classify the pair (S, X) as real and (Ŝ, X) as fake, while G
tries to fool D such that D classifies (Ŝ, X) as real.

1) cGAN Generator for signal synthesis: The generator
is performing an image-to-image translation task. Usually,
auto-encoder models are used for this problem, but, due to
downsampling, a lot of information can be lost. Addition-
ally, image information flow passes through all the layers,
including the bottleneck. Thus, sometimes, many unwanted
redundant features (inputs and outputs are sharing a lot of the
same pixels) are exchanged. For this reason, we employ skip
connections following the structure of a Residual U-Net [18].
The Residual U-Net is composed of two branches: encoder
and decoder.

As shown in Fig.2, the spectrograms of the near-end micro-
phone (Y ) and the far-end speech (X) are used as inputs in a
two-channel grayscale image of size 160×32×2. The encoder
branch consists of stacked convolutional blocks with residual
connections, forcing the network to focus on temporally-close
correlations in the input signal. These connections have im-
proved deep learning models optimization, avoiding gradient
vanishing problems in other U-Net applications. Regarding
pooling operation between the convolutional blocks, it is per-
formed only in the frequency-related dimension using filters
of size 2× 1. Due to the small size of the input time frames,
a temporal pooling could soften the spectrogram and degrade
the speech representation.

In the decoder branch, the convolutional blocks are de-
convolutions that progressively recover the spatial dimension.
The G network also features skip connections, connecting
each encoding layer to its homologous decoding layer and
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Fig. 2: Proposed framework to perform acoustic echo cancellation. The microphone (Y ) and far-end (X) spectrograms are
concatenated and fed into the generator (Feature extraction and signal synthesis). Subsequently, the predicted spectrogram (Ŝ)
is concatenated to the far-end spectrogram (X) and fed to the discriminator (Signal discrimination).

passing the fine-grained information of the input spectra to
the decoder. In addition, they offer a better training behavior,
as the gradients can flow deeper through the whole structure.
Finally, a convolutional layer of size 1 × 1 reconstructs the
estimated near-end speech spectrogram, Ŝ.

2) cGAN Discriminator (synthesis vs real): The dis-
criminator is in charge of transmitting information to G of
what is real and what is fake. In this way, Gcan slightly
correct its output towards the realistic distribution, getting
rid of the echo components as those are signaled to be fake.
Therefore, D can be expressed as learning some sort of loss
for G’s output to look real. In this case, D is composed of
a Convolutional Neural Network (CNN) classifier with two
inputs, the predicted spectrogram by the generator (Ŝ) and the
conditional information (X). D : {Ŝ ∪ X} → Z maps the
generated spectrograms Ŝ to an embedding vector Z, where
the classification stage is addressed in a lower-dimensional
space. At the end of the convolutional network, a softmax-
activated dense layer is applied to address the classification
(fake vs real).

3) cGAN optimization: The generator and discriminator
are trained in an adversarial way where both networks play a
mini-max game, and try to maximize their own utility function.
The generator tries to fool the discriminator by producing
samples which are very close to the samples from the training
data, and the discriminator tries to be good at classifying real
and fake data.

On the one hand, during the generator training stage,
learning is driven by the error between the clean and predicted
spectrograms and the loss provided by the discriminator ev-
ery iteration. Let us denote the spectrogram module of the
target signal as S(k,m), where m denotes the frame index,
m = 1, . . . ,M , and k is the frequency bin. The loss function
that measures the error between the spectrograms is defined
as the root mean square error (RMSE):

LRMSE =

√√√√ 1

M(w/2 + 1)

M∑
m=1

w/2∑
k=0

[
Ŝ(k,m)− S(k,m)

]2
.

(2)
The chosen discriminator loss function is the categorical

cross-entropy and it is expected to predict the pair {Ŝ,X} as
real:

LD =

M∑
m=1

D(Ŝ,X) · log10 â , (3)

where â denotes the discriminator ground-truth. Thus, the
objective function used in the back propagation is a weighted
combination of both previous losses:

LG = LRMSE + α · LD . (4)

On the other hand, during the discriminator training stage,
learning process is just driven by the discriminator loss every
second iteration. The loss function remains being categorical
cross-entropy (3) but it is expected to predict the pair {Ŝ,X}
as fake and {S,X} as real.

III. EXPERIMENTS AND RESULTS

A. Dataset

The chosen dataset to fit our model is the synthetic dataset
released by Microsoft for the 2021 AEC Challenge [19].
It consists of 10,000 synthetic samples comprising single-
talk, double-talk, near-end noise, far-end noise, and various
nonlinear distortion situations. Each sample includes a far-
end speech, an echo signal, a near-end microphone signal and
the near-end speech that will be considered the ground truth
S in (2)-(3). Further details on each generated sample are
available in the github repository1. For the 10,000 synthetic
samples, the SER was uniformly distributed between −10 and
9 dB in steps of 1 dB. For model evaluation the 400 first

1https://github.com/microsoft/AEC-Challenge.

87



Fig. 3: Ablation study on discriminator loss. Hyperparameters
study for α in (4) based on the PESQ score.

samples have been selected, as it was recommended in the
Challenge. The rest of recordings, excluding those first 400,
make up the training data.

B. Performance metrics

We have used the echo return loss enhancement (ERLE) and
the perceptual evaluation of speech quality (PESQ) [20] as the
performance metrics. The ERLE evaluates the echo reduction
achieved during single-talk periods when the near-end speech
is not present as

ERLE = 10 log10
E[y2(n)]

E[ŝ2(n)]
≈ 10 log10

∑
n y

2(n)∑
n ŝ

2(n)
, (5)

where the statistical expectation operation E[·] is estimated by
the mean square value over the whole speech duration. The
PESQ is an objective measure of the quality of the estimated
near-end speech ŝ(n) compared to that of the original speech
s(n), thus it will be used for double-talk scenarios. The PESQ
scores range from −0.5 to 4.5, and a higher score indicates a
better speech quality.

C. Ablation experiments

In order to optimize the cGAN parameters, we have carried
out several experiments. Using the training setting, we have
cross-validated different values of α = {0.02, 0.05, 0.1, 0.5}
in (4) and the corresponding PESQ scores of their synthesised
speech signals ŝ(n) have been obtained and depicted in Fig.3.

These results show that the inclusion of the discriminator
loss term in the whole training improves the performance of
the synthesised speech. Nevertheless, using a too large slope
once the performance is satisfied can lead to a worsening of
the results. Thus, we have selected α = 0.05 due to its good
PESQ performance in Fig.3. The rest of the parameters’ values
used to train our model are: 130 epochs with batch size of 128,
step µ = 5 · 10−4 for the generator and step µ = 5 · 10−5 for
the discriminator. Both steps suffer an exponential declination
from epoch 80.

D. Experimental Results

After training our model with the mentioned dataset and
the optimized parameters, we have evaluated our methodology
in the test set by means of the PESQ and ERLE metrics.

TABLE I: PESQ and ERLE scores for different scenarios. All:
Whole testset; FN: Far-end Noisy; FnN: Far-end not Noisy;
NN: Near-end Noisy; NnN: Near-end not Noisy; N+FnL: Both
Noisy + Far-end not Linear.

Metrics Models Testing parameters

All FN FnN NN NnN N+FnL

PESQ
GAN 2.68 2.66 2.7 2.6 2.75 2.58
U-Net 2.72 2.71 2.74 2.65 2.79 2.63
cGAN 2.76 2.74 2.78 2.69 2.82 2.66

ERLE
GAN 34.24 33.73 34.78 33.62 34.82 33.43
U-Net 35.94 35.57 36.32 35.36 36.47 35.46
cGAN 36.31 36.11 36.51 35.85 36.73 36.28

Additionally, to assess the performance improvement of the
proposed cGAN, we have compared the results with two
baseline models: a Residual U-Net and a GAN. The core
structure is the same for all the networks, maintaining the
number of filters and layers of the generator. In the case of
the Residual U-Net, we omit the discriminator block so it
only consists of a generator. In contrast, in the GAN, the
discriminator input is a one-channel image, so the far-end
spectrogram, X , is not used as the condition. The ERLE
and PESQ values for the three models are shown in Table
I for different scenarios and for the whole range of SER
values between −10 dB and 9 dB. Table I shows that the best
performance in both metrics is achieved by the cGAN for
every particular scenario.

As a further discussion on the results shown in Table I, we
can compare the PESQ scores obtained by our models to those
reported by [8], [9], [21], whose AEC solutions obtained the
fourth, third and second position, respectively, in the “Acoustic
Echo Cancellation Challenge - ICASSP 2021” [4]. It was not
possible to compare our model with the best one [6] because
they do not measure their performance with an implementable
metric. First, the authors in [8] use 100 utterances randomly
chosen from the synthetic dataset of Microsoft as their test
set, reporting a PESQ of 2.61, which is lower than the PESQ
values obtained by our models in the “All” column of Table I.
Second, Westhausen et al. [9] use an alternative test set also
provided by Microsoft (called test set in [19]), which presents
similar characteristics to the synthetic dataset. Their PESQ
scores are 2.53 for near-end noisy speech (comparable to the
PESQ values in the “NN” column of Table I), 2.73 for far-end
noisy speech (comparable to the values in the “FN” column),
and 2.43 for both noisy signals (comparable to the values in the
“N+FnL” column). Third, in [21] the authors use the first 500
clips from synthetic dataset to evaluate their model, reaching
a PESQ score of 2.07. It can be appreciated that the PESQ
achieved by our cGAN framework outperforms the previous
AEC solutions for all conditions.

Finally, we have studied the influence of the signal-to-echo
ratio in the performance of our model gathering the PESQ
and ERLE values in uniform sets according to their SER:
low SER in the range of [−10,−7] dB, medium-low in the
range of [−6,−3] dB, medium SER in the range of [−2, 1] dB,
medium-high in the range of [2, 5] dB and high SER in the
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Fig. 4: Average ERLE and PESQ values for different SER
intervals of the test set.

range of [6, 9] dB. Fig.4 shows the average ERLE (top) and
the average PESQ (bottom) of the synthesised signals for every
set, where the SER value in Fig.4 is taken as the center point
of the interval. It can be appreciated that the cGAN values
for both PESQ and ERLE metrics are higher than the other
models for most of the SER intervals. Nevertheless, the PESQ
and ERLE gains obtained by the cGAN with respect to the
U-Net is higher in medium to high values of SER, whereas
for low to low-medium SER values the discriminator cannot
improve the signal obtained at the generator output. Regarding
the GAN behaviour, the U-Net and cGAN clearly outperform
the GAN for all SER inervals. It is remarkable that the GAN
performance is worse than that of the U-Net, what shows the
importance of building a robust conditional discriminator.

IV. CONCLUSIONS

In this paper, we present an AEC system based on a
conditional Generative Adversarial Network (cGAN). For the
model training and testing, we have used a synthetic dataset
provided by Microsoft. We have evaluated the performance of
this architecture both in single-talk and double-talk scenarios
by means of ERLE and PESQ metrics, respectively. We have
also compared the results of our proposal with U-Net and GAN
methods, and state-of-the-art works showing the benefits of our
model.
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