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Abstract—Time-domain and frequency-domain Kalman filters
are applied as adaptive filters to many audio signal processing
problems, especially to acoustic system identification. As the
formal relationship between these two Kalman filters is not
obvious, we connect them using a unified perspective. To this
end, we show the equivalence of both filters as a special case and
transfer concepts from one domain to the other. Specifically, the
concept of considering multiple past observations is transferred
to the frequency-domain Kalman filters, and the concept of block-
based processing is transferred to the time-domain Kalman filters.
Transferring these concepts yields new Kalman filter variants
that allow for a different trade-off between convergence speed,
steady-state performance and computational complexity.

Index Terms—Adaptive filters, Kalman filtering, system identi-
fication

I. Introduction

Adaptive filters are frequently applied for acoustic system
identification. Kalman filters (KFs) represent one popular family
of adaptive filters. They are based on a state-space description
and estimate a state vector which completely characterizes
a linear acoustic system. The applications in audio signal
processing are numerous. For example, KFs have been applied
in acoustic echo control (AEC) to identify the echo path [1],
[2]. Furthermore, KFs have been utilized in active noise control
(ANC) [3], [4] and for the online [5] or offline [6] measurement
of head-related transfer functions (HRTFs). Due to the specific
needs and constraints in these applications, many variants of
KFs have been proposed.

On the one hand, there are time-domain KFs, such as in
[2]–[4]. Here, the state vector represents impulse response
coefficients of the system to be identified. The time-domain
KF has been extended to consider multiple past signal samples
and has been related to the affine projection algorithm in [7].
Theoretical performance bounds were investigated [8], [9], and
an efficient approximation has been proposed in [10].

On the other hand, in frequency-domain KFs the state
vector represents complex-valued discrete Fourier transform
coefficients. The frequency-domain formulation allows for a
different efficient approximation and is related to frequency-
domain adaptive filters [1]. There are extensions to multiple-
input-single-output systems [11] and non-linear systems [12].
A partitioned-block variant to estimate long filters has been
proposed in [13]. More recently, frequency-domain KFs have

been extended to incorporate prior knowledge about the systems
to be identified [14].

As the time-domain and the frequency-domain approaches
have evolved separately in the past, they may appear discon-
nected. However, it is the purpose of this contribution to connect
the two approaches and to provide a unified perspective. After
reviewing the time-domain and the frequency-domain KFs in
Sec. II, we show that both approaches are equivalent under
certain conditions in Sec. III. Then, we establish new KF
variants by transferring time-domain concepts to the frequency
domain and vice versa in Sec. IV. Finally, we evaluate and
compare the different variants (Sec. V), and conclude in Sec. VI.

II. Review of Kalman Filters for System Identification
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Fig. 1. Signal model for system identification.

We consider the single-channel system identification setup
as depicted in Fig. 1. The discrete-time input signal 𝑥(𝑘) is
filtered with the, possibly time-variant, filter 𝑤𝑘 (𝜅) of length 𝐿

producing the non-distorted, and non-observable, output signal

𝑑 (𝑘) =
𝐿−1∑︁
𝜅=0

𝑤𝑘 (𝜅) 𝑥(𝑘 − 𝜅) . (1)

A noisy output signal 𝑦(𝑘) = 𝑑 (𝑘) + 𝑛(𝑘) can be observed.
The adaptive filter 𝑤̂𝑘 (𝜅) estimates the output signal as 𝑑 (𝑘).

A. Time-Domain Kalman Filter (TKF)
The signal model for the time-domain Kalman filter [2]

describes the impulse response coefficient vector

wt,𝑘 =
[
𝑤t,𝑘 (0) , . . . , 𝑤t,𝑘 (𝐿 − 1)

]T ∈ R𝐿 (2)

as a multidimensional random process. Here, (·)T denotes the
transpose of a vector or matrix and the subscript ”t” indicates a
time-domain quantity. Throughout this paper bold capital letters
denote matrices, while bold lower case letters denote vectors.
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In some cases the vector notation is kept for consistency even
if a vector simplifies to a scalar. The coefficients’ evolution
over time is assumed to be described by the state equation

wt,𝑘 = Atwt,𝑘−1 + qt,𝑘 (3)

with the state transition matrix At and zero-mean normally-
distributed process noise qt,𝑘 ∼ N (0,Qt). Typically, a Markov
model with scalar fading factor 0 ≪ 𝛾 ≤ 1 is used, i.e.,
At = 𝛾I𝐿 , where I is the 𝐿×𝐿 identity matrix. The process noise
variance per coefficient is denoted by 𝜎2

𝑞 such that Qt = 𝜎2
𝑞I𝐿 .

The observation equation is given by

𝑦(𝑘) = yt,𝑘 = Ct,𝑘wt,𝑘 + 𝑛(𝑘) = Ct,𝑘wt,𝑘 + nt,𝑘 , (4)

where normally-distributed observation noise 𝑛(𝑘) ∼ N
(
0, 𝜎2

𝑛

)
or, in more general matrix-vector notation, nt,𝑘 ∼ N (0,Rt) is
assumed. These assumptions about At, Qt and Rt are common
and can also be found in [2], [3], [7], [9]. The observation
matrix, which depends on the input signal, is Ct,𝑘 =

←−xT
[𝐿 ],𝑘 .

Here, we define −→x [𝐿 ],𝑘 = [𝑥(𝑘 − 𝐿 + 1) , . . . , 𝑥(𝑘)]T as the
length-𝐿 ”forward” vector containing the 𝐿 most recent time
samples of 𝑥(𝑘) up to time index 𝑘 . Similarly, ←−x [𝐿 ],𝑘 =

[𝑥(𝑘) , . . . , 𝑥(𝑘 − 𝐿 + 1)]T shall be the ”backward” vector.
The Kalman equations constitute the optimal linear minimum-

mean-squared-error estimator of the state [2]. We denote
the a priori state estimate as ŵ(−)t,𝑘 , the a posteriori esti-
mate as ŵ(+)t,𝑘 , and define the state error covariance matrix,
with corresponding a priori and a posteriori definitions, as
Pt = E

{
(wt − ŵt) (wt − ŵt)H

}
, where E {·} denotes the

expectation operator and (·)H represents complex conjugate
transpose. The prediction equations are given by

ŵ(−)t,𝑘 = Atŵ(+)t,𝑘−1, (5)

and
P(−)t,𝑘 = AtP(+)t,𝑘−1AT

t +Qt, (6)

while the update steps read

Kt,𝑘 = P(−)t,𝑘 CT
t,𝑘

(
Ct,𝑘P(−)t,𝑘 CT

t,𝑘 + Rt

)−1
, (7)

ŵ(+)t,𝑘 = ŵ(−)t,𝑘 +Kt,𝑘et,𝑘 , (8)

with
et,𝑘 =

(
yt,𝑘 − Ct,𝑘ŵ(−)t,𝑘

)
, (9)

and
P(+)t,𝑘 =

(
I𝐿 −Kt,𝑘Ct,𝑘

)
P(−)t,𝑘 (10)

We choose the initial value P(+)t,−1 = 𝜎2
𝑝I𝐿 .

B. General Time-Domain Kalman Filter (GTKF)
In [7], the above model is extended to take multiple past

observations into account at each time step, which can be
shown to be related to the affine projection algorithm. This
variant is referred to as the so-called ”general” Kalman filter.
Its quantities are indicated by underlines in the following. The

modified observation vector, including the past 𝐽 observations
of the output signal, is given by the length-𝐽 vector

y
t,𝑘

=
[
yT

t,𝑘 , . . . , y
T
t,𝑘−𝐽+1

]T
= [𝑦(𝑘) , . . . , 𝑦(𝑘−𝐽 + 1)]T (11)

and hence the observation noise nt,𝑘 ∼ N
(
0,Rt

)
in (4)

becomes 𝐽-dimensional. Similarly, a modified observation
matrix considering 𝐽 past observations can be defined by

Ct,𝑘 =
[
CT

t,𝑘 , . . . ,C
T
t,𝑘−𝐽+1

]T ∈ R𝐽×𝐿 . (12)

This model is based on the assumption that the system impulse
response does not change a lot within the past 𝐽 samples. The
Kalman equations (5) to (10) can be applied similarly using
the underlined quantities.
C. Frequency-Domain Kalman Filter (FKF)

A frequency-domain Kalman filter for system identification
has first been proposed for echo cancellation in [1]. Instead
of using samplewise processing, the convolution operations in
(4) and (9) are conducted for a block of 𝐵 samples using the
overlap-save method. Each block is indexed by block index 𝜆.

The state vector, representing the acoustic system’s impulse
response, is defined as the discrete Fourier transform (DFT)
of the zero-padded impulse response, i.e.,

wf,𝜆 = FHwt,𝜆𝐵 = F
[

wt,𝜆𝐵
0(𝑀−𝐿)×1

]
∈ C𝑀 , (13)

where H =
[
I𝐿 0𝐿×(𝑀−𝐿)

]H is the zero-padding matrix, and
F is the unitary 𝑀×𝑀 DFT matrix. In contrast to [1], we prefer
to use unitary DFT matrices in our formulation to facilitate
showing the equivalence in a special case later. Similarly to
(3), the state equation can be formulated as

wf,𝜆 = Afwf,𝜆−1 + qf,𝜆. (14)

The process noise is assumed to be described by a complex
multivariate random process qf,𝜆 ∼ NC (0,Qf). Here, Af
denotes the frequency-domain state transition matrix, which
is usually assumed to be Af = 𝛾I𝑀 . The frequency-domain
observation equation can be written as

yf,𝜆 = Cf,𝜆wf,𝜆 + nf,𝜆. (15)

This equation requires the following definitions, namely, the
length-𝑀 frequency-domain observation vector

yf,𝜆 = FG−→y [𝐵],𝜆𝐵, (16)

where −→y [𝐵],𝜆𝐵 is defined analogously to −→x [𝐿 ],𝑘 above. The
frequency-domain observation matrix is

Cf,𝜆 =
√
𝑀FGGHFH diag

{
F−→x [𝑀 ],𝜆𝐵

}
∈ C𝑀×𝑀 (17)

with the constraining matrix G =
[
0𝐵×(𝑀−𝐵) I𝐵

]H.
The length-𝑀 frequency-domain observation noise vector

nf,𝜆 = FG−→n [𝐵],𝜆𝐵 is assumed to be described by a complex
random process nf,𝜆 ∼ NC (0,Rf).

Replacing the time-domain quantities, with subscripts ”t”, by
the corresponding frequency-domain quantities, with subscripts
”f”, and replacing the time index 𝑘 with the block index 𝜆, the
equations (5) to (10) describe the frequency-domain Kalman
filter.
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D. Diagonalized Frequency-Domain Kalman Filter (DFKF)
A common simplification, introduced in [1] to reduce the

computational complexity, is to approximate all the matrices
involved as 𝑀 × 𝑀 diagonal matrices. According to [1] and
considering the scaling of the DFT matrix used here, the
approximated observation matrix is

𝚪f,𝜆 =
𝐵
√
𝑀

diag
{
F−→x [𝑀 ],𝜆𝐵

}
, (18)

the Kalman gain is approximated as

Kf,𝜆 ≈ P(−)f,𝜆 𝚪H
f,𝜆
√
𝑀

(
𝑀𝚪f,𝜆P(−)f,𝜆 𝚪H

f,𝜆 +
𝑀

𝐵
Rf

)−1
, (19)

and the approximated state error covariance update is

P(+)f,𝜆 =
(
I −Kf,𝜆𝚪f,𝜆

)
P(−)f,𝜆 . (20)

If the state transition matrix, the process noise covariance
matrix and the observation noise covariance matrix are also
diagonal, an efficient vectorized implementation can be used.

III. Special Case of Equivalence

While the time-domain and the frequency-domain Kalman
filters in Secs. II-A and II-C, respectively, may appear discon-
nected, we will now prove that they are equivalent for 𝐵 = 1
under certain assumptions. From 𝐵 = 1, we obtain 𝜆𝐵 = 𝑘 ,
and we want to identify an impulse response of the length
𝐿 = 𝑀 −𝐵+1 = 𝑀 . Therefore, (13) simplifies to wf,𝑘 = Fwt,𝑘 .
If we choose Af = FAtFH, Qf = FQtFH, the state equations
(3) and (14) are equivalent.

Similarly, we show that the observation equations (4) and
(15) are equivalent. Multiplying (15) from the left by F−1 = FH,
we obtain

FHyf,𝑘 =

[
0(𝑀−1)×1
𝑦 (𝑘)

]
= FHCf,𝑘FFHwf,𝑘 + FHFFHnf,𝑘 (21)

= FHCf,𝑘Fwt,𝑘 +
[
0(𝑀−1)×1
𝑛(𝑘)

]
. (22)

To prove the equivalence, it is hence sufficient to show that

FHCf,𝑘F =

[
0(𝑀−1)×𝑀

Ct,𝑘

]
. (23)

Inserting (17) into the left side of (23) yields

FHCf,𝑘F = FH√𝑀FGGHFH diag
{
F−→x [𝑀 ],𝑘

}
F (24)

=
√
𝑀GGH FH diag

{
F−→x [𝑀 ],𝑘

}
F︸                     ︷︷                     ︸

= 1√
𝑀
C{−→x [𝑀 ],𝑘}

, (25)

where we used the property that any circulant matrix, defined
by a vector c = [𝑐(0) , . . . , 𝑐(𝑀 − 1)]T, i.e.,

C {c} =


𝑐(0) 𝑐(𝑀 − 1) . . . 𝑐(1)
𝑐(1) 𝑐(0) . . . 𝑐(2)
... . . .

. . .
...

𝑐(𝑀 − 1) 𝑐(𝑀 − 2) . . . 𝑐(0)


, (26)

can be factorized [15] as follows:
√
𝑀FH diag {Fc} F = C {c} . (27)

Then, continuing from (25):

FHCf,𝑘F =

[
0𝑀−1 0

01×(𝑀−1) 1

]
C
{−→x [𝑀 ],𝑘} =

[
0(𝑀−1)×𝑀
←−xT
[𝑀 ],𝑘

]
(28)

as multiplying by GGH from the left sets the first 𝑀 − 1 rows
to zero and extracts the last row of C

{−→x [𝑀 ],𝑘}. This remaining
row is the time-reversed version of −→x [𝑀 ],𝑘 and that is ←−x [𝑀 ],𝑘
for 𝑀 = 𝐿 and 𝐵 = 1.

Since we have shown that both the state equations and
observation equations are equivalent, the corresponding Kalman
filters must be equivalent, too. To obtain identical initial
conditions for both the TKF and the FKF, we set Pf = FPtFH

and must choose Rf such that the variance of the last sample
of the time-domain vector FHnf,𝑘 in (22) equals 𝜎2

𝑛 . Hence,
Rf = 𝜎2

𝑛I𝑀 .

IV. Proposed Kalman Filter Variants
Having shown the above equivalence, we can transfer

concepts from one domain to the other and vice versa. Three
analogies will be drawn in the following.

A. General Frequency-Domain Kalman Filter (GFKF)
Inspired from the idea of taking multiple observations into

account in the GTKF, we apply this concept to the frequency-
domain KFs. The modified frequency-domain observation
equation considering 𝐽 observations is

y
f,𝜆

= Cf,𝜆wf,𝜆 + nf,𝜆, (29)

where
y

f,𝜆
=

[
yH

f,𝜆, . . . , y
H
f,𝜆−𝐽+1

]H
∈ C𝐽𝑀 (30)

and
Cf,𝜆=

[
CH

f,𝜆, . . . ,C
H
f,𝜆−𝐽+1

]H
∈ C𝐽𝑀×𝑀 . (31)

In this case, the observation noise becomes 𝐽𝑀-dimensional,
i.e., we assume nf,𝜆 ∼ NC

(
0,Rf

)
with Rf = I𝐽 ⊗ Rf . Here, ⊗

denotes the Kronecker product. Again, the Kalman equations
(5) to (10) can be applied with the appropriate replacements.

The proposed generalization is equivalent to the GTKF only
if 𝐵 = 1. For 𝐽 > 1, the equivalence can be proven similarly
to above. Yet, this generalization can also be employed for
any block length 𝐵, which will no longer be equivalent to
the GTKF. A GFKF-equivalent time-domain KF for 𝐵 > 1 is
presented in Sec. IV-C.

B. General Diagonalized Frequency-Domain KF (GDFKF)
The computational cost of the general frequency-domain

Kalman filter will be dominated by the cost of computing
the 𝐽𝑀 × 𝐽𝑀 inverse in the Kalman gain (analogously to
(7)). It approximately corresponds to O

(
(𝐽𝑀)3

)
. Therefore,

we modify the more efficient diagonalized frequency-domain
Kalman filter to consider 𝐽 past observations by defining

𝚪f,𝜆 =

[
𝚪H

f,𝜆, . . . , 𝚪
H
f,𝜆−𝐽+1

]H
∈ C𝐽𝑀×𝑀 . (32)

92



With this definition, however, not all quantities in the diagonal-
ized frequency-domain Kalman filter remain diagonal matrices.
Instead of computing the inverse of the 𝐽𝑀 × 𝐽𝑀 matrix(

𝑀𝚪f,𝜆P(−)f,𝜆 𝚪H
f,𝜆 +

𝑀

𝐵
Rf

)
, (33)

we suggest to reduce this 𝐽𝑀 × 𝐽𝑀 block matrix of 𝑀 × 𝑀

diagonal matrices above to a block diagonal matrix of 𝑀

dense matrices of size 𝐽 × 𝐽 by multiplication with appropriate
permutation matrices. Computing the inverses of the small
matrices can be implemented in a parallel fashion. Note
that this approach is structurally similar to the multi-channel
diagonalized frequency-domain Kalman filter in [11]. A detailed
complexity discussion for all variants is omitted here for brevity.

C. General Block Time-Domain Kalman Filter (GBTKF)
To complete the picture of single-channel Kalman filters in

the time domain and in the frequency domain, we can also
formulate a block-based KF in the time domain and immediately
extend it to the general version. Therefore, we define the state
equation, now with block index 𝜆, as

wt,𝜆 = Atwt,𝜆−1 + qt,𝜆, (34)

in which the state is updated only every 𝐵-th sample, similarly
to the state equation (14). The observation equation becomes

y
t,𝜆

= C
t,𝜆

wt,𝜆 + n
t,𝜆
, (35)

where the 𝐽𝐵-dimensional observation vector is

y
t,𝜆

=

[
←−yT
[𝐵],𝜆𝐵, . . . ,

←−yT
[𝐵], (𝜆−𝐽+1)𝐵

]T
. (36)

The 𝐽𝐵 × 𝐿 observation matrix is given by

C
t,𝜆

=
[←−x [𝐿 ],𝜆𝐵, . . . ,←−x [𝐿 ],𝜆𝐵−𝐵+1, . . . ,←−x [𝐿 ], (𝜆−𝐽+1)𝐵−𝐵+1]T

(37)
and we have n

t,𝜆
=

[
←−nT
[𝐵],𝜆𝐵, . . . ,

←−nT
[𝐵], (𝜆−𝐽+1)𝐵

]T
. In this case,

the observation noise becomes 𝐽𝐵-dimensional and we assume
that n

t,𝜆
∼ N

(
0,R

t

)
with R

t
= I𝐽 ⊗ Rt.

For 𝐵 = 1, the general block time-domain Kalman filter
reduces to the general time-domain Kalman filter (cf. Sec. II-A),
which again reduces to the standard time-domain Kalman filter
(cf. Sec. II-A) for 𝐽 = 1. With appropriate choices of Rf , Qf
and the initial state error covariance matrix Pf , the frequency-
domain KF and the block time-domain KF can be shown to be
equivalent. For simplicity 𝐽 = 1 is considered, but the result
also holds for 𝐽 > 1. Using nf = FGnt and wf = FHwt, it can
be shown that

Rf = FGRtGHFH ≈ 𝜎2
𝑛

𝐵

𝑀
I𝑀 , (38)

Qf = FHQtHHFH ≈ 𝜎2
𝑞

𝐿

𝑀
I𝑀 , (39)

and
Pf = FHPtHHFH ≈ 𝜎2

𝑝

𝐿

𝑀
I𝑀 . (40)

The above diagonal approximations become more precise for
𝐵 → 𝑀 and 𝐿 → 𝑀, respectively. However, they do not
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Fig. 2. GFKF vs. GDFKF for 𝐿 = 128, 𝐵 = 64 at 20 dB SNR.

yield the original time-domain covariance matrices, we started
from, when transforming back to the time-domain due to the
impact of multiplying with G or H. Instead one must choose

Rf =𝜎
2
𝑛I𝑀 , (41) Qf =𝜎

2
𝑞I𝑀 , (42) Pf =𝜎

2
𝑝I𝑀 . (43)

Note that all the variants presented can straightforwardly be
extended to the multiple-input-single-output cases.

V. Experimental Comparison
A comprehensive evaluation in various applications for

time-invariant and time-variant conditions, and using different
process noise and observation noise online-estimation methods
is out of scope for this paper. Thus, we conducted three
simulated experiments to evaluate and compare the different
Kalman filter variants using the setup from Fig. 1. The relative
system distance metric [2] is used for evaluation. The common
parameters for each experiment were: sampling rate 16 kHz,
white Gaussian noise signals 𝑥(𝑘), 𝜎2

𝑝 = 10−4, 𝜎2
𝑛 matching

the true signal-to-noise ratio (SNR) conditions, which was
generated adding white Gaussian noise. The impulse response
coefficients were drawn from a standard normal distribution,
and the impulse response vectors were normalized to unit
energy. Each experiment was repeated 20 times and the results
were averaged to obtain smoother, more readable curves. For
simplicity, we chose: Af = I𝑀 and At = I𝐿 in all cases.

First, we analyze how considering multiple past observations
in the GFKF and GDFKF can be advantageous. Fig. 2 depicts
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block lengths. The curves of FKF and BTKF coincide for 𝐵 = 1, as expected.

the convergence and steady-state behavior for an example of
exchanging the impulse response at 0.5 s. Considering multiple
past observations increases the norm of the error vector ef,𝜆 and
hence increases the effect of the state vector update Kf,𝜆ef,𝜆,
which results in faster convergence. However, this comes at
the price of decreased steady-state performance as the larger
random error implies to continue updating the state vector
into random directions. This result matches the results for the
GTKF in [7]. Surprisingly, the steady-state system distance of
the GDFKF is lower than the one of the GFKF. This might be a
consequence of the block diagonal Kalman gain matrix which
does not model dependencies between frequency bins and
results in smaller changes overall. In this example, we observe
that the GDFKF with 𝐽 = 4 offers comparable performance to
the original FKF at a reduced complexity. This demonstrates
that the GDFKF can be an attractive choice.

Second, the impact of considering more past observations
is investigated when the ”time span” of past samples, i.e., 𝐽𝐵
remains constant, as shown in Fig. 3. Both for the GFKF and
the GDFKF, we observe that larger 𝐽 means faster convergence
but worse steady-state performance, similar to Fig. 2.

Fig. 4 compares the FKF and the block time-domain KF
(BTKF), i.e. the GBTKF for 𝐽 = 1, for different block lengths.
As the FKF becomes equivalent to the BTKF for the exact
equations in (38) to (40), it is not depicted because the results
are identical to the ones of the BTKF. These approximations
become exact for 𝐵 = 1 and yield identical outputs, as shown.
Using the diagonal matrices (41) to (43) in the frequency-
domain decreases the performance for larger block lengths
compared to the BTKF. These frequency-domain diagonal

matrices represent nonzero variances in all 𝑀 time-domain
samples — mismatching the assumption — as only 𝐵 or 𝐿

of the 𝑀 time-domain samples are nonzero. Note that larger
block lengths for both the FKF and the BTKF mean slower
convergence but a lower steady-state system distance.

VI. Conclusion
We have provided a unified perspective on time-domain

and frequency-domain Kalman filters (KFs). It was shown
that the TKF and the FKF are equivalent for the block length
𝐵 = 1. This equivalence leads to the block time-domain KF
variant (BTKF), which can also be equivalent to the FKF for
𝐵 > 1. We have transferred the concept of considering multiple
past observations from the GTKF to frequency-domain KFs.
This yields the GFKF and the GDFKF variants. Further, we
extended the BTKF to the GBTKF, which considers multiple
past blocks of samples. The proposed variants extend the variety
of KFs and allow us to precisely tune the compromises between
convergence speed, steady-state performance and computational
complexity required in specific applications.
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