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Abstract—Given the attacker’s freedom of using any spoofing
attack, there is a need to explore liveness detection approaches
that can classify a live speech from all the various spoofed
speeches. To that effect, we propose Morlet wavelet-based ap-
proach for Voice Liveness Detection (VLD). We use acoustic
cues of pop noise to discriminate a live speech signal from a
spoof speech. Pop noise is present in live speech signals at low
frequencies, caused by human breath reaching at the closely-
placed microphone. As compared to the STFT-based baseline
with 62.08% as overall accuracy, we obtain significantly im-
proved performance. We achieve an overall accuracy of 80.00%
on the evaluation set with 45-D handcrafted Morlet wavelet-based
features, and an accuracy of 86.23% with Morlet scalogram
is obtained on the evaluation set. Better results signify that
for VLD, wavelet transform-based time-frequency (scalogram)
representation is more efficient as compared to the conventional
STFT-based spectrogram. Furthermore, we have analyzed the
effect of various phoneme types on VLD performance for the
proposed approach.

Index Terms—Voice liveness detection, automatic speaker ver-
ification, pop noise, scalogram, CNN.

I. INTRODUCTION

An Automatic Speaker Verification (ASV) or voice biomet-
ric system performs machine-based authentication of speakers
using speech signals [1]. ASV is a voice biometric system
which has applications, such as banking transactions using
mobile phones. Personal information, and banking details,
demand more robust security of ASV systems. However, ASV
systems are also vulnerable to various spoofing attacks, such as
impersonation, twins, Voice Conversion (VC), Speech Synthe-
sis (SS), and replay. Given these ASV system vulnerabilities,
the ASVspoof Challenge campaigns were held in 2015, 2017,
2019, and 2021 during INTERSPEECH conferences. These
challenges aimed to detect and develop robust countermea-
sures for replay attacks [2]–[6]. In this context, a ’liveness’
detection corpus called as the POp noise COrpus (POCO) has
been released in 2020 to allow research on development of
robust Voice Liveness Detection (VLD) systems [7], [8]. VLD
improves the security of ASV systems by protection against
various types of spoofing attacks, including even attacks using
unknown voice conversion and speech synthesis methods [8],
[9]. One of the cues of liveness in a speech signal is the
presence of pop noise in a live (genuine) speech signal. Pop
noise is a short-time distortion in a speech signal which is
caused by a burst of air on the microphone originating from

a live speaker’s mouth [10]. Signals that are known to spoof
ASV systems, such as synthetic speech and replayed speech,
fail to reproduce the pop noise as strongly as a live speech
signal [7], [11], of course with the assumption that spoofed
speech is not recorded with wiretapping. Pop noise is found in
live speech as sudden bumps of strong energy within duration
ranging between 20 ms and 100 ms [8]. This gives us a clue to
define a suitable strategy for liveness detection. Low frequency
regions (≤ 40 Hz) are the regions where pop noise can be
located [7], [8].

Considering the actual procedures for spoofing attacks, such
as replay, SS, VC etc., spoofed speech has to be played via
loudspeakers. Specifically for a replay attack, the recorded
(spoofed) signal is captured in a covert manner from the
genuine (live) speaker. Hence, the recording device is kept
at a distance away from the speaker’s microphone. The pop
noise is poorly captured in the spoofed signal because of the
distance of the recording device from the microphone and the
assumption that no wiretapping is done. Moreover, playback
devices and loudspeakers fail to reproduce the sudden distor-
tions caused by pop noise [7], [12]–[14].

This paper Morlet wavelet-based features for pop noise
detection. With respect to Heisenberg’s uncertainty principle
in signal processing framework [15], wavelet-based approach
offers improved resolution in time and frequency as compared
to the STFT-based method [16]. Furthermore, Morlet wavelets
are known to capture perceptual cues effectively (both in visual
and hearing domains). To that effect, the use of Morlet wavelet
to capture discriminating cues based on pop noise for genuine
vs. replay spoof classification is being proposed for the first
time in this paper. Experiments are presented for two CWT-
based features, namely, Handcrafted Morlet Wavelet and Low
Frequency Morlet Scalogram-based Features on POp noise
COrpus (POCO) for liveness detection.

II. PROPOSED APPROACH USING CWT
A. Continuous Wavelet Transform (CWT)

The effect of human breath on a microphone results in a
sudden high energy (i.e., pop noise as an event in speech) in
low frequency regions. To locate pop noise, time-frequency
representations, such as spectrogram have been used in the
past [8], [17]. However, to get better detection of pop noise, we
have used CWT in this work. The key idea behind employing
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Fig. 1: Panel I represent the case of presence of pop noise (gen-
uine speech) indicated by box. Panel II represents the case of
reduced pop noise (spoofed speech) due to the use of pop filter,
(a) time-domain signal for the word ’laugh’, (b) corresponding
scalogram, and (c) corresponding low-frequency (0 − 40 Hz)
scalogram. Solid boxes in Panel I indicate the presence of pop
noise, while corresponding dotted boxes in Panel II indicates
that the pop noise has been eliminated due to pop filter.

wavelet for pop noise detection is to exploit the capability
of a wavelet (which is a wave of short duration) to capture
transients in speech, i.e., occurrence of pop noise. A mother
wavelet ψ(t) ∈ L2(R) is a wave of short duration that has
zero average. It is defined as:

ψa,b(t) =
1√
a
ψ
( t− b

a

)
, a ∈ R+, b ∈ R, (1)

where b is called the translation (position), and a is called the
dilation (scale) coefficient. There are various types of wavelets.
The most famous wavelet is the Morlet wavelet, which is a
modulated Gaussian, and it is defined as [18]:

ψ(t) = ejω0te−t2/2, (2)

where ω0 is taken as 5 Hz for a standard Morlet wavelet. The
Morlet wavelet is obtained from a Gaussian window multiplied
by a sinusoidal wave [19]. The CWT of signal f(t) is

Wf (a, b) =< f(t), ψa,b(t) >,

=
1√
a

∫ ∞

−∞
f(t)ψ∗

( t− b
a

)
dt,

(3)

where < ·, · > indicates inner product operation to com-
pute wavelet coefficients, and ∗ denotes complex conjugate.
We have considered Morlet wavelet in this work because
it is closely related to human perception (for both hearing
and vision) [20]. Moreover, CWT is related to constant-Q
filtering- a short-time analysis performed by the peripheral
auditory system. In particular, as per the original investigation
by Flanagan [21], the wavelet function, for the mechanical
spectral analysis performed by the basilar membrane in the
human ear is given by ψ(t) = (tω)2e−tω/2 [21]. Furthermore,
Morlet wavelet is the most widely used wavelet for CWT
and, in fact, the first wavelet of its kind in formal historical
developments of wavelets in the geophysics literature for
detection of transients and improving joint time-frequency

resolution of seismic signals [22].

B. Proposed Approaches
The feature extraction for Spoofed Speech Detection (SSD)

task is based on the hypothesis that both genuine and spoof
utterances possess differences w.r.t. presence and absence
of pop noise energy levels respectively. Fig. 1 shows the
scalograms of the word ’laugh’. A distinct signature of pop
noise can be seen in Panel I. However, the pop noise signature
is not so distinct for the case when a pop filter was used as
shown in Panel II of Figure 1.

1) Handcrafted Morlet Wavelet-based Features: CWT co-
efficients are extracted from the speech data of POCO corpus
by taking Morlet as the mother wavelet. CWT coefficients are
found for frequencies ≤ 40 Hz, as shown in Algorithm 1.
Furthermore, to keep the dimension (D) of feature vector as
45 and also to extract the prominent energy of pop noise, the
energies are arranged in descending order, and the highest 45-
D values are taken for extracting the 45-dimensional feature
vector.
Algorithm 1: Proposed Handcrafted Morlet Wavelet-
based Feature Extraction for VLD.
Input: Speech signal f(t)
Output: Feature

1 w name=‘amor’ // Taking Morlet wavelet
2 [cwt coeffs, F] ← cwt(f(t), w name)

/* Finding CWT coefficients for low frequencies */
3 Low F ← find (0 < F ≤ 40 Hz)

Low coeffs ← cwt coeffs (Low F)
4 Pop energy = abs (Low coeffs)2

/* Converting pop energy to a 45-D feature vector */
5 dim ← 45
6 M=mean (Pop energy)
7 SD=standard deviation (Pop energy)
8 k ← length (Low coeffs)
9 while k > 0 do

10 i = 1

11 Norm Pop(i) = Pop energy(i)−M
SD

12 k −− , i++

13 [sorted, index] ← sort (Norm Pop, descending)
14 Feature ← Pop energy (index(1:dim))

2) Low Frequency Morlet Scalogram-based Features:
Scalogram is a visual time-frequency representation of
CWT coefficients. In particular, it can be interpreted as a
time-frequency energy density, |Wf (a, b)|2 [19]. The time-
frequency resolution of the wavelet transform depends on
the frequency of the signal. At high frequencies, the wavelet
reaches a high time resolution but a low frequency resolution.
At low frequencies, high frequency resolution and low time
resolution can be obtained. Since pop noise most likely occurs
at frequency regions ≤ 40 Hz, scalograms are very well suited
to extract energies at low frequencies because of the higher
frequency resolution of scalogram at lower frequencies.

For our experiments, the lowest frequency bin is set at
1.9826 Hz. The scale factor between 2 consecutive bins is
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1.0718. Therefore, the kth bin index corresponding to 40 Hz
is calculated as:

40 = (1.0718)k ∗ 1.9826. (4)

Therefore, frequency region approximately below 40 Hz is
found to be corresponding to the nearest integer k = 44
frequency bins. Taking bin index below k = 44, we get fre-
quencies exactly below 41.9025 Hz. This is the region where
the pop noise is located. To that effect, scalogram images are
extracted only corresponding to 44 wavelet coefficients. Each
scalogram image is of the size 512 × 512. These scalogram-
based features are then fed as an input to the CNN.

III. EXPERIMENTAL SETUP

A. Dataset Used

The dataset used is the POp noise COrpus (POCO) with
speech data sampled at 22.05 kHz [7]. The POCO dataset
consists of 3 parts which are described briefly as below:
Genuine utterances with microphone-A (RC-A): In this set,
only one microphone (Audio-Technica AT4040) is used. The
distance between the speaker and the mic is kept fixed as 10
cm. The utterances in RC-A correspond to genuine utterances,
as they have pop noise.
Genuine utterances with microphone array (RC-B): This
set of genuine utterances is captured with a microphone
array comprising 15 microphones (Audio-Technica AT9903
microphones).
Replay utterances with microphone-A (RP-A): Like the
RC-A set, this set also contains utterances corresponding to
one microphone and the distance between the speaker and the
microphone is 10 cm. However, a TASCAM TM-AG1 pop
filter is used between the speaker’s mouth and the microphone.
Given the use of pop-filter in this case, this set is emulated
and considered to be spoofed and specifically designed for pop
noise detection. Therefore, the utterances in RP-A correspond
to spoof utterances, as they have pop noise.

TABLE I: Statistics of the POCO dataset used. After [7].

Subset Number of
Utterances

Number of
Speakers

Male Female
Training 6952 13 14

Development 3432 6 7
Evaluation 6600 13 13

Out of the above-mentioned subsets of the POCO dataset,
we have used RC-A and RP-A as live and replay utterances,
respectively. The speech samples of these 2 subsets were
partitioned into training (40% of the dataset), development
(20% of the dataset), and evaluation sets (40% of the dataset).
The detailed specifications of the partitions taken are shown
in Table I.

B. Classifier Used

A Convolution Neural Network (CNN) or ConvNet [26],
[27] is a neural network model that consists of one or more

Fig. 2: The CNN architecture used for classification of the
proposed Morlet wavelet scalogram-based features.

TABLE II: 44 words of the POCO dataset divided into
phoneme categories. After [7].

Phoneme Associated words in the dataset

Plosive
paw, tip, pink, open, pay, pin, sit, spider, be, kit, bird,
end, dad, steer, quick, about, tourist, bug, honest

Fricative
wolf, laugh, five, funny, fat, live, shout, chair, sham,
leather, thong, busy

Whisper who, hop, you, his
Nasal arm, monkey, summer
Liquids run, gun
Affricate chip, join, exaggerate, division

convolutional layers followed by a classification layer. The two
wavelet-based approaches described in Section II-B, which
yield matrices of sizes 45×45 and 3×512×512, respectively.
For our experiments, the CNN architecture (shown in Figure
2) consists of 3 convolutional layers (Conv1, Conv2, Conv3)
followed by 3 Fully-Connected (FC1, FC2, and FC3). The
output of Conv3 is fed to the FC1 layer. The output of the final
FC3 layer provides a probabilistic output for classification.
Sigmoid activation function used at the output of FC3, while
ReLU activation function is used for all the hidden layers.
Binary cross-entropy is used as the loss function and stochastic
gradient descent algorithm is used as the optimization algo-
rithm. The sequence and the number of layers in the CNN
are kept the same for 45-D handcrafted feature as well as
scalogram. However, for the case of scalogram images of
size 512 × 512, the input is convolved with a kernel of size
7 × 7 for Conv1 and 3 × 3 for Conv2 and Conv3. For the
case of handcrafted 45-D wavelet-based features, the input is
convolved with a kernel of size 3×3 during the forward pass,
with a stride of 1, and zero-padding of 1. A max-pooling layer
with a kernel size of 3× 3, and stride of 1 is used.
C. Phoneme-wise Categorization

There are 44 words in POCO dataset and their corre-
sponding International Phonetic Alphabet (IPA) have been
mentioned in [7]. Given that, a word can have multiple
phonemes in it, only the most prominent phoneme in the word
is taken into consideration. The 44 words of the POCO dataset
are put into various phoneme classes as shown in Table II.

D. Baseline Approaches

1) Low Frequency Spectrogram-Based Features: Low fre-
quency spectrogram-based features for VLD were extracted
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TABLE III: Average Accuracy (in %) of different Phoneme types.

Phoneme
Type

(A)
Spectrogram

(SVM)
[7]

(B)
CQT

(SVM)
[23]

(C)
Spectrogram

(CNN)
[24]

(D)
Mel-

spectrogram
(CNN)

(E)
Handcrafted

Bump
Wavelet-based

(CNN)
[25]

(F)
Handcrafted

Morlet
Wavelet-based

(CNN)
(Proposed)

(G)
Handcrafted

Morlet
Scalogram

(CNN)
(Proposed)

Freq. Range 0-40 Hz 0-11025 Hz 0-11025 Hz 0-40 Hz 0-40 Hz 0-40 Hz 0-40 Hz
Plosive 60.46 63.61 71.72 74.13 81.58 79.35 89.07
Fricatives 67.66 73.78 75.55 77.45 80.77 79.27 87.61
Whisper 68.44 73.29 76.83 74.99 81.09 79.48 86.21
Nasal 54.26 57.78 59.33 70.51 76.50 71.36 80.77
Liquids 69.78 57.16 56 69.23 69.87 65.38 79.49
Affricates 58.26 68.92 71.83 72.51 78.53 74.35 85.26

Fig. 3: Word-wise accuracies (in %) with CNN classifier for (C): Full-frequency spectrogram, (D): Low-frequency Mel-
spectrogram, (E): Handcrafted Bump wavelet-based features, (F): Handcrafted Morlet wavelet-based features, and (G):
Handcrafted Morlet scalogram.

from STFT in [8]. The same algorithm was used on POCO
dataset in [7]. In this work, energies only in the low frequency
(in particular, < 40 Hz) regions were extracted by selecting
frequency bins corresponding to 0 to 40 Hz. Next, the average
Seng of the spectral energy densities of the STFT-based
spectrogram was calculated by averaging across the bins for
every kth frame. For the framewise spectral energies obtained
in Seng , mean and standard deviation were calculated to obtain
normalized values. The frames with the 10 highest energies
were selected to get meaningful spectrogram-based features
for pop noise detection. The classifier used was SVM.

2) CQT-Based Features: An improvement to the baseline
was introduced in [23], using CQT-based features. As com-
pared to the STFT that has constant frequency interval, CQT
has geometrically distributed frequency bins due to constant-Q
ratio of center frequency to resolution. The number of bins per
octave is taken to be 96 and the number of samples taken in
the first octave is 2. Furthermore, fmin is set to 0.48 Hz and
fmax is set to 11050 Hz. For classification, the study reported
in [23] used Support Vector Machines-based (SVM) classifier.

3) Mel-Spectrogram-Based Features: Apart from our pro-
posed CWT-based approach in this work, we also include the
use of Mel spectrogram (to our knowledge, this is not utilized
for VLD task in the literature) for the purpose of comparing
our results. We estimated pop noise energies using the STFT-
based approach on Mel Spectrogram only on frequencies < 40
Hz. Therefore, we estimated the Mel-spectrogram with 16
number of bands and 5400 as the FFT length for better

frequency resolution. Classification was done using a CNN-
based classifier described in sub-Section III-B.

IV. EXPERIMENTAL RESULTS

A. Proposed Handcrafted Morlet-Based Features

For the case of 45-D wavelet-based features (shown as
system (F)), we achieved an overall accuracy of 80%. Fig.
3 shows word-wise accuracy over 44 words in the dataset.
We observed that the word ’pay’ has the highest accuracy of
91.02%, because the word ’pay’ has a strong plosive sound of
/p/. Furthermore, we achieved an average accuracy of 79.35%
and 79.27% on words with prominent performance on plosives
and fricatives, respectively, as shown in Table III.

B. Proposed Morlet Scalogram-Based Features

The Morlet scalogram features (shown as system (G))
performed significantly well as compared to the traditional
STFT-based baseline system. We observed overall accuracy
of 86.23% on Morlet scalogram-based features. We observed
that the word ’tourist’ has the highest accuracy of 97.43%,
because the word ’tourist’ has 2 strong plosive sounds of /t/.
Given the effect of pop-noise depends on the uttered word, we
achieved an average accuracy of 89.07% and 87.61% on words
with prominent plosives, and prominent fricatives respectively.
C. Discussion

It can be observed in Table III that our proposed Morlet
scalogram-based approach outperforms every other methods
for all the phoneme types. Furthermore, we also observe that
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all the methods perform relatively better for plosives and
fricative sounds. Fricative sounds (such as, /f/ sound in the
word ‘laugh’) are produced due to turbulent airflow, which
results in bursts of energy at low frequencies for a short-time
period, characterizing the presence of pop noise. Furthermore,
plosive sounds (such as, /p / sound in ‘pay’) are caused by
a sudden release of a burst of air from the lips, resulting in
pop noise [28]. On the contrary, energy distribution in nasal
sounds is due to partial air released from the nostrils and the
mouth [28]. Since the released air is coming from two sources,
it barely results in energy at low frequency regions. To that
effect, the accuracy score of all the algorithms are relatively
lower for the nasal sounds.

V. SUMMARY AND CONCLUSIONS

In this work, we used CWT to effectively improved reso-
lution in time and frequency for VLD based on pop noise.
VLD enables to discriminate a live voice from the other non-
live voice signals, such as replayed, voice converted, and
synthetically generated signals. To that effect, two handcrafted
features were proposed in this study: Morlet wavelet-based
features, and Morlet scalogram-based features. A significant
improvement in accuracy is observed with both the features as
compared to the existing systems. Further analysis shows the
effect of phoneme type on the accuracy. However, the proposed
approach comes with a trade-off between high performance
and computational complexity. Further similar wavelet-based
methodologies can be tested for various configurations of
spoof signals, as future work. Furthermore, the combined
effect of microphone variability on ASV and pop noise-based
VLD task can also be investigated.
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