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Abstract—Content moderation (CM) systems have become
essential following the monumental increase in multimodal and
online social platforms; and while increasingly published work
focuses on text-based solutions, there is still limited work on
audio-based methods. In this study we aim to explore relation-
ships between speech emotions and toxic speech, as part of a
CM scenario. We first investigate an appropriate framework for
combining speech emotion recognition (SER) and audio-based
CM models. We then investigate which emotional aspects (i.e.,
attribute, sentiment, or attitude) could contribute the most in
facilitating audio-based CM recognition platforms. Our experi-
mental results indicate that conventional shared feature encoder
approaches may fail to capture additional discriminative features
for boosting audio-based CM tasks while utilizing SER learning.
We further investigate performance trade-offs of late-fusion
frameworks for combining SER and CM information. We argue
that these observations could be attributed to an emotionally-
biased distribution in the CM scenario, concluding that SER
could in deed play a role in content moderation frameworks,
given added application-specific emotional information.

Index Terms—speech emotion recognition, audio-based content
moderation, toxic language detection, sentiment detection

I. INTRODUCTION

Increasing and widespread availability of social media plat-
forms has enabled people to more freely interact with others
online. Activities such as social networking or online gaming
provide enriched and convenient interactions between people,
but could also inevitably attract negative, aggressive and even
toxic behaviors, leading to cyberbullying, harassment or hate
speech phenomena [1], [2]. Traditional approaches adopted by
social platforms for identifying these harmful behaviors rely
heavily on manual examination by human moderators, which
is costly, inefficient and non-scalable. Automated content
moderation (CM) systems have recently welcomed machine
learning techniques for resolving traditional limitations [3],
thanks to advancements in machine learning and deep learning
algorithms, and to increasingly available data resources.

Popular platforms such as Twitter and Facebook utilize
conventionally text-based frameworks for CM, with the ob-
jective of identifying whether a post or comment contains
toxic information based on some extracted textual features.
For instance, Del et al. [4] utilized common morpho-syntactic
and sentiment polarity features to build a long short-term
memory (LSTM) hate speech recognition model for Facebook
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comments. Similarly, Nobata et al. [5] showed the combination
of different standard natural language processing (NLP) fea-
tures (e.g., N-gram, POS tags) and semantic embeddings (e.g.,
word2vec) could lead to outperforming performances over
baselines that use single aspect feature on abusive language de-
tection. More recently, many studies have exploited powerful
pretrained language models (e.g., BERT) for extracting robust
neural representation of words, and then perform additional
finetuning [6] or transfer learning [7] stage for the downstream
CM tasks, achieving state-of-the-art recognition performances.

However, when it comes to voice-based social platforms
(e.g., multiplayer online gaming or voice/video chatting),
purely text-based models may not be sufficient for compre-
hensively capturing a user’s intent, especially for those cues
that are embedded in acoustic-only features. A few recently
published studies with a focus on acoustic features such as
Mel-spectrogram [8] or Mel-frequency cepstrum coefficients
(MFCCs) [9] have shown promising results for detecting
toxic speech. Besides toxic-related acoustic patterns, people’s
emotional states have further been found to be closely related
to their toxic behaviors [10]. Therefore, speech emotion recog-
nition (SER) could be an important technique to facilitate the
exploration in the audio-based CM research field.

In this study, we investigate whether speech emotions pro-
vide complementary information for identifying toxic speech
in a content moderation scenario of online gaming. Our analy-
sis is based on deep learning frameworks and our contributions
are divided into three parts: 1) the modeling strategy for
combining SER and audio-based CM; 2) the choice of the
most relevant emotional view or aspect (attributes, sentiments
or categories); 3) the implications of fusing SER information
in an audio-based CM system. To the best of our knowledge,
there is no prior work on a comprehensive automated CM
framework, aimed at bringing insights into potential intercorre-
lations between speech emotions and toxic speech moderation.

II. BACKGROUND

In NLP and text-based CM, employing additional informa-
tion from emotional cues is not a new concept. Prior work has
explored different approaches to exploit sentiment and emotion
information; a straightforward method is to augment morpho-
syntactic (e.g., part-of-speech, POS) and stylometric (e.g.,
function words, FW) patterns with emotion-based features, as
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the input to train a CM recognition model. Markov et al. [11]
adopted the NRC emotion lexicon to encode emotion-based
features by emotional word counts and their associations of
emotions (e.g., sadness). The lexicon helps extract emotion
information contained in the text, and can also be directly
applied to perform unsupervised sentiment analysis and clus-
tering for identifying hate speech [12]. Besides handcrafted
features, deep learning frameworks can directly extract the
discriminative emotional features by treating the emotional
information as a supervised recognition task [13]; or fine-tune
pre-trained language models such as BERT using additional
sentiment corpus to obtain emotion-relevant neural represen-
tations for enhancing the CM prediction accuracy [14].

However, there is still no literature that explores the integra-
tion of speech emotions in an audio-based CM task. Conven-
tionally, SER is regarded as a sequence-to-one recognition task
which aims to identify the emotional state of an input audio
clip based on its acoustic patterns. Traditional handcrafted
features often contain energy, spectral and frequency-based
acoustic parameters [15] such as formants, MFCCs and pitch.
The emotional labels are usually attributes (e.g., arousal,
valence, dominance) [16] or categories (e.g., joy and angry)
[17], annotated in sentence-level manner (i.e., one global label
is assigned per spoken sentence). Recently, deep network ar-
chitectures using raw waveform [18] or spectrogram [19] have
achieved competitive performances compare to traditional
handcrafted features. Below, we investigate the role of SER
for identifying toxic speech in a content moderation scenario,
and the potential of leveraging acoustic-based features of SER
towards more effective CM techniques.

III. RESOURCES AND INVESTIGATION SETTINGS

A. Datasets

- MS-CM: For the content moderation scenario, a private
dataset of voice clips is used, obtained from an online gaming-
related platform, and comprised of verbal communication that
was self-reported for violating Microsoft’s public user agree-
ment policies as related to toxic, discriminatory or abusive
behavior. The voice recordings had a maximum duration of 15
secs and were annotated by a policy-expert annotator into two
classes namely toxic and non-toxic, according to company’s
moderation rules and guidelines. In total, there are 630K
utterances with an imbalanced label distribution of 1:5 for
the toxic and non-toxic classes. This corpus contains in-the-
wild recordings with uncontrolled microphone and channel
settings, and is riddled by contamination and artifacts such
as background music playing and other noises [8].
- 1D-IEMOCAP: For complimentary SER learning, we consid-
ered IEMOCAP [20], a popular public benchmark dataset that
contains 12 hours of scripted or improvised dialogues from
10 actors. Both attribute and categorical labels will be used in
this study, separately, from all utterance-split dialogues.
- 5D-Collection: This augmented emotional corpus considers
a collection of categorically-labeled speech segments from 5
public datasets, IEMOCAP, EmoDB, RAVDESS, VAM and
eNTERFACE [20]–[24], in an effort to simulate a diversified

TABLE I
THE DETAILED MODEL PARAMETERS.

Layer Channels/Nodes Kernel Stride Activation
Input 1 N/A N/A N/A

CNN-block 32 (5, 5) 1 ReLU
MaxPooling N/A (4, 4) 4 N/A
CNN-block 64 (3, 3) 2 ReLU
MaxPooling N/A (2, 2) 2 N/A
CNN-block 64 (3, 3) 2 ReLU

Flatten/Dropout p = 0.5 N/A N/A N/A
FCN 256 N/A N/A ReLU

BLSTM 64 N/A N/A Tanh
Output Layers depends N/A N/A depends

dataset that comes closer to realistic needs of a SER system.
- Atti-1D MS-Call: Here we consider another view (attitude
view) of the emotional information with speech segments com-
ing from the purposefully-mismatched domain of support calls,
yet close enough to the domain of emotions. The motivation
is to incorporate sentiment information from different views
or scenarios, and also to enlarge the available emotional data
with more natural speech, since most public datasets are non-
spontaneous (i.e., actors acting in controlled environments),
and have a relatively small data size (i.e., less than 10K
utterances per set). This corpus includes 110K utterances of
private customer service support calls, labeled according to the
attitude as negative, neutral or positive.

We use these four distinct sets of corpora to investigate
which aspect of emotions could provide complementary in-
formation to our audio-based CM scenario.

B. Acoustic Features and Model Architecture

Data were downsampled to 16KHz, 16-bit mono, excluding
segments beyond [1, 15] secs duration. We extract logarithmic
mel-spectrograms as input features for both the SER and
audio-based CM models. The 512-dim magnitude spectrogram
was computed over 32ms windows with 50% overlap, and
then mapped onto the mel scale using 64 mel-frequency filters,
followed by z-normalization.

We used the same core architecture and parameters through-
out all experiments, consisting of the CNN-BLSTM model.
We first adopt the dynamic segmentation formula proposed
by [16] to split originally varied length (on the temporal
dimension) input feature map (i.e., the log-mel-spectrogram)
into a fixed number of equal-length data chunks. The CNN part
of the model is responsible for encoding the coarse-level rep-
resentations, while the concatenated bidirectional LSTM layer
captures temporal information across different data chunks for
summarizing the final sentence-level feature representation.
The detailed model structure is shown in Table I; the CNN-
block consists of a 2D-CNN with BatchNorm and ReLU
activation function and the output layer consists of a fully
connected layer (FCN) using ReLU activation and a top layer
depending on the recognition tasks and their loss functions.
More specifically, the audio-based CM model is a binary
classifier using Sigmoid activation and binary cross entropy
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Fig. 1. Baseline models (a) and different modeling approaches for integrating
SER in an audio-based CM model (b-d).

(BCE) loss, while the SER model can be either a multi-class
classifier for emotional categories or an emotional regressor
for attribute scores optimized with the CE or concordance
correlation coefficient (CCC) loss function, respectively. We
refer to the CNN-BLSTM layers as the feature extractor FE
and the FCN output layers as NN, Figure 1(a).

We used the Adam optimizer at a fixed learning rate of 10−4

with 128 batch size, and 100 epochs maximum, sufficient for
all models to converge. In addition, we used an uniform label
sampler to obtain balanced label distribution for every batch
in training. We applied early stopping criteria using a small
development set. For corpora without predefined train, devel-
opment and test sets, we performed 5-fold cross validation
(CV) using speaker independent split sets and similar label
distribution among sets. The average test results from all 5-
CVs constitute the final model performance. The performance
metrics used in this work are the weighted and unweighted
F1-scores, and the precision and recall of the toxic class.

IV. INVESTIGATION STUDIES

A. Preliminary Study of Modeling Methodology

As the goal is to compare different modeling approaches
for incorporating SER information into the audio-based CM,
we first build two baseline models looking at each task as an
independent recognition problem: one for CM using the MS-
CM corpus; and one for SER using the IEMOCAP corpus
for the arousal and valence regressors. We refer to the base-
line problem formulation as single-(data) domain-single-task
(SDST) in Figure 1(a), where the recognition model of each
task is trained with its own task-specific data and labels. Table
II contains the baseline or benchmark performance of the SER
model (SDST-SER), demonstrating the effectiveness of the
proposed model architecture; it achieves competitive perfor-
mance with other state-of-the-art benchmarks on IEMOCAP.
Since the focus of this work is mainly on how SER information
could boost CM, we will move our focus from the SER
performance to the CM performance while we incorporate
different emotional information to the CM task, and we will
compare the results to the CM baseline (SDST-CM).

We consider the combination of SER and audio-based CM
as the multi-(data) domains-multi-tasks (MDMT) problem, in-
volving two different recognition tasks from different datasets.
One of the most common modeling methodology is to train

TABLE II
PERFORMANCE COMPARISON FOR BASELINE TASK SDST-SER.

Metric SDST-SER (IEMOCAP)
CCC (ours) arousal=0.656, valence=0.406
CCC [16] arousal=0.629, valence=0.365
CCC [27] arousal=0.590, valence=0.421

Fig. 2. tSNE plots of the shared FE models. SER datapoints appear in blue,
and CM datapoints in red. Domain separation is mitigated with DANN (right).

a shared feature encoder (i.e., the FEshared part of our
model) for the two tasks, shown in Figure 1(b). Findings
indicate that the trained model is trying to memorize domain-
specific information of the two different tasks. This can be
seen in the t-SNE [25] plot visualization in Figure 2 left
panel, where we see a clear separation between the shared
features FE extracted for the SER datapoints (blue color)
and the CM datapoints (red color). To eliminate the task-
specific separation, we extend the model with an additional
domain-adversarial classifier, DANN [26] (MDMT-FEshared

DANN in Figure 1(c)), using a reverse gradient operation to
confuse the model. This indeed helps the model create shared
features with no apparent separation for the two datasets
as seen in Figure 2 right panel. However, moving from
the MDMT-FEshared model to the MDMT-FEshared DANN
model results in a small unexpected performance degradation,
Table III: partial domain-specific information might be critical
to capturing discriminating features, and that training shared
features jointly may not always constitute a favorable option.

B. Different Emotional Aspects and their Impact

The shared FE model failed to illustrate benefits in combing
SER and audio-based CM, Table III. In this section, we train
the FE for each task independently and then perform late
feature-fusion [28] to incorporate emotional information to
CM, Figure 1(d), MDMT-FEindep. We first pretrain on the
SER task and freeze the trained FE model to extract emotional-
relevant features on the MS-CM corpus; this will constitute
the SER-related information channel. The other channel is a
supervised audio-based CM model with weighted fusion for
incorporating the SER-related channel. The weighted fusion
is achieved by a standard channel-wise attention model with
Softmax activation weights for explicitly capturing the con-
tribution of the two information channels (i.e., weights are
constraint to sum up to 1). Although there are various ways
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TABLE III
COMPARISON OF RECOGNITION PERFORMANCES FOR DIFFERENT

MODELING APPROACHES FOR INCORPORATING SER TO CM.

Metric SDST-CM FEshared FEshared DANN
F1-weighted 0.770 0.765 0.756
F1-unweighted 0.640 0.611 0.607
Toxic-Precision 0.385 0.356 0.349
Toxic-Recall 0.473 0.376 0.396
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Fig. 3. Distributions of the predicted emotion for task CM using 3 different
SER models, along with the human labeling for reference.

to fuse information (e.g., concatenation, mean fusion), we did
not find significant performance difference among them. The
major advantage of this modeling methodology is that one can
flexibly replace the pretrained SER in Figure 1(d), and further
facilitate the investigation of different SER emotional aspects
contributing to the audio-based CM. Here, we divide the
emotional aspects into three different types: attribute (Attr),
sentiment (Senti) and attitude (Atti). These types will be
defined in conjunction with the corpora of Section III-A.

• Attr-1D: This SER model is an emotion regressor trained
on IEMOCAP arousal and valence attributes. The ”1D”
means only one dataset is used for training.

• Senti-1D: The SER model is a 3-class classifier. The
categorical labels are mapped to three sentiment classes,
positive, neutral and negative (e.g. fear, anger, sad and
disgust are mapped to the negative sentiment class). The
SER model is trained on IEMOCAP only.

• Senti-5D: Same 3-class classifier as Senti-1D, but here
SER training includes the full 5D-Collection corpora.

• Atti-1D: A 3-class classifier trained on negative, neutral
and positive attitudes of Atti-1D MS-Call corpora.

The caveat is to verify that the pretrained SER model cap-
tures reliable emotion information for MS-CM, before using
it as an emotion channel. As emotion labels are not available
for the MS-CM corpus, we manually labeled a random sample
of 300 audio clips using the three sentiment classes to form
a human annotation reference of the emotion distribution.

TABLE IV
COMPARISON OF RECOGNITION PERFORMANCES FOR DIFFERENT

EMOTIONAL ASPECTS CONTRIBUTING TO THE AUDIO-BASED CM MODEL.

Metric SDST-CM Attr-1D Senti-1D Senti-5D Atti-1D
F1-weighted 0.770 0.771 0.776 0.773 0.769
F1-unweighted 0.640 0.637 0.640 0.642 0.640
Toxic-Precision 0.385 0.384 0.393 0.391 0.384
Toxic-Recall 0.473 0.457 0.453 0.467 0.474

Hard-to-annotate clips (due to extreme artifacts or low SNR)
were deemed Unknown. The last panel of Figure 3 portrays
the reference distribution of emotion, with an obvious bias
towards negative sentiment, which is not surprising consid-
ering the nature of the MS-CM corpus. Next, we turn into
the model’s sentiment predictions. We replace the objective
function from CE to CCC loss (from classifier to regressor)
to obtain continuous sentiment scores from emotional aspects.
The regressor sets positives further apart from negatives, than
neutral. The first 3 panels in Figure 3, illustrate a negative-
biased distribution, in agreement with the manual annotations.
This means that the pretrained SER models are effective for
capturing the emotional trend of the MS-CM corpus.

Table IV shows performances on the four emotional aspects
of the SER model, as compared to the CM baseline (SDST-
CM). Main takeaways: (i) the Senti emotion generally obtains
improved performances (except the Toxic-Recall) over the Attr
and Atti. On average, Senti-5D achieves the best performance,
arguably because it incorporates more diverse speech data,
potentially closer resembling the realistic conditions of the
MS-CM corpus. (ii) We see a trade-off trend of the improved
precision but degraded recall performances for the toxic class
under the Senti aspect of SER, compared to the baseline. A
closer look helped us verify that this trade-off is a consistent
trend even under different size of training data, Figure 4 left.
In summary, the Senti emotional aspect is a more favorable
integration to the audio-based CM model, and results in a
trade-off trend of the toxic precision and recall performances.
However, diversifying the SER training datasets (Senti-5D vs
Senti-1D) can help remedy the recall degeneration.

Finally, we notice that the overall improved performance of
the CM model is quite moderate after adding SER information.
Taking a closer look at the attention weights during Senti-
5D test phase, we can separate the SER contribution (blue
color) and the audio-based CM (red color), Figure 4 right; high
values indicate higher contribution. The distribution shows
that SER contributes significantly less compared to the CM
features w.r.t. the overall audio-based CM model (i.e., most
attention weights for the SER channel fall below 0.2). The
major contributor to this may be the negative sentiment-bias
in the online CM scenario or the more controlled recording
settings of the SER domain when compared to the CM corpus.

V. CONCLUSIONS

In this study, we investigated different automatic model-
ing methodologies for integrating speech emotion recognition
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Fig. 4. Trade-off performance trend for different training data size (left);
attention weights distribution during testing (right).

(SER) to an audio-based content moderation (CM) model. We
found that a conventional shared feature encoder (FEshared)
framework is incapable of capturing additional or enhanced
discriminative information for the CM domain. An indepen-
dently trained FE with late fusion and attention leads to an
improved precision with the trade-off of a degraded recall per-
formance. We found that speech sentiment (negative, neutral,
positive) is a more favorable emotion aspect for audio-based
CM recognition compared to emotional attribute or attitude.
Diversifying the speech emotion corpora in the SER module
of the model leads to higher toxic recall performance for
CM. Finally, we observed that an emotional-biased CM data
distribution can limit the importance of SER contributions,
deeming SER integration dependent on the CM scenario.
Additional exploration is needed for understanding the true
role of emotional features in automated content moderation
frameworks, and a closer look to different content moderation
scenarios is part of our future work. We hope that this study
serves as reference for further exploration in this area.
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