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Abstract—Emotions are essential for human communication
as they reflect our inner states and influence our actions. Today,
emotions provide crucial information to many applications, from
virtual assistants to security systems, mood-tracking wearable
devices, and autism robots. The speech emotion recognition (SER)
model must be lightweight to run on varying devices with limited
computational power. This research investigates the performance
of music-related features for SER based on the auditory and
neuropsychology evidence about the connection of emotional
speech and music in human perception. Unlike prior works
on low-level descriptors that primarily focus on differentiating
human speech production, our method employs features ex-
tracted directly from raw speech signals through Discrete Fourier
Transform and Constant-Q Transform. These features represent
the perceptual pitches and timbre characteristics of the human
voice. The 10-fold cross-validation results show that our method
improves the accuracy of the audio feature-based approach
on RAVDESS, CREMA-D and IEMOCAP datasets. Findings
from the ablation study imply the significance of perceptual
pitch, the perceptual loudness and the combination of pitch and
timbre features in building a robust SER model. Compared to
pretrained deep learning embeddings, our method demonstrates
its generalizability and high efficiency despite a much smaller
model size.

Index Terms—speech emotion recognition, audio features,
music features, LLD, MFCC, CQT, Mel spectrogram

I. INTRODUCTION

Speech emotion recognition (SER) has been an active
research area in Human-Computer Interaction for more than
two decades. Many recent studies in SER borrow large pre-
trained models from Computer Vision (CV), and Natural
Language Processing (NLP), which can range from hundreds
to thousands of megabytes in size and be computationally
expensive [1]–[4]. In terms of audio-based methods, the
most popular approach relies on an excessive amount of
hand-crafted features designed for general speech recogni-
tion tasks, including speech-to-text and speaker recognition.
They are called Low-level descriptors (LLD) that include
speech production-related features (e.g. energy, fundamental
frequency, voice probability, harmony, jitter, shimmer, ...), and
their derived values (e.g. max, min, mean, standard deviation,
kurtosis, skewness, regression coefficients, ...). Notable ones
are ComParE [5], GeMAPS and eGeMAPS [6]. ComParE [5]
is the largest LLD set, which is also the most popular audio
feature set for many speech classification tasks. Eyben et al.
proposed GeMAPS and its extended version eGeMAPS as
minimalistic acoustic sets for affective computing [6]. They

achieve 76% to 80% UAR (Unweighted Average Recall) for
arousal (intensity) regression, but only 64% to 68% for valence
(positivity) regression [6]. These results align with insights
from Sezgin et al. [7] where features based on the production
of emotional speech are highly correlated to arousal. However,
the author note these features have a low correlation with
valence; hence they cannot help distinguish basic emotions.

To improve the ability of machines to mimic the human
sense of emotions, SER models must learn from features
that represent our perception of emotional speech. According
to psychology studies [8], there is a strong link between
emotional speech and music. Music is a more expressive form
of emotional speech. Neuropsychology research has shown
that people with music-specific disorders such as amusia
have speech-based emotion recognition impairments [9]. This
inspires us to explore features used in music recognition that
capture the intonation characteristics of voice for emotion
recognition, most notably pitch and timbre related features.

According to auditory research from Oxenham [10], pitch
is a perceptual quality of sound that is ordered on the scale
used for melody in music (e.g. C1, C1#, D1, ...). The absolute
pitch spectrum plays an essential role in auditory perception
that not only provides semantic and non-semantic information
of speech but also helps us listen in a noisy environment.
Oxenham mentioned that one of the key differences between
human hearing and other species is the tendency to focus
on relative pitch relations (i.e. 12 pitch classes, or chroma).
To extract these features from raw audio signals, we use
Constant-Q Transform (CQT). The CQT is well motivated
by the musical theory that the fundamental frequencies F0
of the tones in Western music are geometrically spaced. Thus,
the CQT spectrogram represents the absolute pitch spectrum
of sound. CQT spectrogram provides the benchmark results
for classification of music [11] and detection of spoofing
attacks [12]. From the CQT spectrogram, we compute the
chroma-based spectrogram (i.e. chromagram) by summing
up all pitch coefficients that belong to the same pitch class
{C,C#, D,D#, ..., B}.

Pitch and timbre have strong interaction and interference
in the human perception of sound [10]. When listening to
different instruments playing the same pitch note, our ears rely
on timbre to distinguish them. This characteristic of sound
is best described using Mel-frequency cepstral coefficients
(MFCC) [13]. This feature captures the spectral envelope
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and the periodic structure of the Mel spectrogram. MFCC is
generated using the Discrete Cosine Transform (DCT) on a
Mel spectrogram; which is obtained from applying DFT and
a Mel filterbank on raw speech signals. As DFT uses linearly
spaced frequency bins (i.e. a constant bin size), the Mel
spectrogram is faster to compute but lacks detailed information
in the audible frequencies than the CQT spectrogram.

II. METHODOLOGY

In this research, we focus on analyzing audio features to
improve SER. We propose new combinations of music-related
features that best describe the pitch and timbre characteristics
in distinguishing emotional speech. We extract and evaluate
them against popular acoustic features and pretrained deep
neural network embeddings.

A. Extracting music-related features for SER

We propose different combinations of the pitch-related
features (CQT spectrogram, Chromagram) and the timbre-
related features (MFCC, Mel spectrogram) for SER. They are
called MuSER (Music-related features for Speech Emotion
Recognition), the extended version eMuSER, and two variants
MuSERn and eMuSERn. The details are included in the Table
I.

We use nnAudio [14] for DFT and CQT transformations.
Before transforming, each raw audio sample is resampled to
16000Hz and segmented into chunks of samples by a window
function. With a window size of 2048 samples for a sampling
rate of 16000, each chunk is 128-millisecond long, which is
also the average length of an English word. With DFT, we
apply the Mel filterbanks with 128 frequency bins on the DFT
spectrogram to extract 128 Mel spectrogram, which is then
converted to log-power spectrum and used DCT type II to get
128 MFCCs. With CQT, we apply the Chroma filterbanks to
extract 12 Chromagram features. Since Mel spectrogram and
CQT spectrogram features have log-normal distribution, we
convert them to log-power spectrum and apply normalization.
Log-power spectrum also represents the human perception
of loudness. The total number of extracted features for each
audio speech are MuSER (380, 1) and eMuSER (520, 1) after
averaging through the time axis.

Recent research in SER employed a similar set of fea-
tures for SER that includes Mel spectrogram, MFCC, and
Chromagram (MMC) [15]. We also extract and evaluate its
performance on the three datasets. We use the exact feature
resolution described above to have a fair comparison.

In addition, Principal Component Analysis (PCA) was ap-
plied to all features to reduce the dimension to 12.5% of
the original feature vector size. It often helps reduce the
complexity and increase the model performance.

B. Extracting Low-level descriptors sets for SER

To compare with the proposed feature sets, we evaluate
common audio features for SER namely GeMAPS, eGeMAPS
and ComParE. We used the OpenSmile library [16] to extract
them. Table II describes the details of each feature set.

Table I: Music-related audio feature sets

MMC: 268 features [15]
Mel spectrogram, MFCC, Chromagram.

MuSER: 380 features
Pitch-related features: CQT spectrogram,
Timbre-related features: MFCC.
MuSERn: 380 features
Log-CQT spectrogram, MFCC.

eMuSER: 520 features
Pitch-related features: CQT spectrogram, Chromagram,
Timbre-related features: MFCC, Mel spectrogram.
eMuSERn: 520 features
Log-CQT spectrogram, Chromagram, MFCC, Log-Mel spectrogram.

Table II: Low-level descriptors sets

ComParE: 6373 features [5]
Voicing probability, Jitter, F0, MFCC, Spectral roll off, flux, slope,
sharpness, loudness, RMS energy, ... and their derived values (deltas
and functionals).

GeMAPS: 66 features; eGeMAPS: 88 features [6]
Voicing probability, Jitter, Shimmer, F0, Formants, MFCC, loudness,
Harmonic-to-noise ratio, Alpha ratio, Energy peak, Spectral flux,
slope, ... and their derived values (deltas and functionals).

C. Extracting pretrained speech embeddings for SER

With the advancements in deep learning, many researchers
have been trying to create deep neural networks (DNN)
to learn the nature of the raw data and project it into a
latent space that is most convenient for the model to handle
downstream tasks such as classifying or generating new data
without relying on feature preprocessing and engineering.
The latent space feature vectors extracted from the hidden
layers of the DNN, or embeddings, are often pretrained on
extensive datasets to achieve high generalizability to deal with
unseen data. For emotion classification, there are two popular
embeddings, namely TRILL1 and Wav2vec2-IEMOCAP2.

TRILL [1] is a pretrained audio speech embedding for non-
semantic classification tasks such as speaker identification,
language identification, and voice-based medical diagnosis. It
uses ResNet-50-based model as a backbone model to learn
representation from Mel spectrogram. It was trained using
the Triplet loss approach to discriminate same or different
audio segment pairs from AudioSet3 (4971 hours), which is a
massive Youtube video dataset. The TRILL feature vector size
is 512. Wav2vec2-PT [17] is a 768-dimensional embedding of
size 768 fine-tuned on IEMOCAP based on Wav2vec2-base,
which is the state-of-the-art embedding for Automatic Speech
Recognition (ASR) [18]. Unlike TRILL, Wav2vec2-PT takes
raw waveform signals as input. The model uses Transformer-
based architecture which was first trained on ASR dataset
using CTC loss, then fine-tuned on IEMOCAP for emotion
classification task using Additive Margin Softmax Loss. Thus,
for this feature, we only evaluate the pretrained model with

1https://tfhub.dev/google/nonsemantic-speech-benchmark/trill/3
2https://huggingface.co/speechbrain/emotion-recognition-wav2vec2-

IEMOCAP
3https://research.google.com/audioset/
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classifier on the whole RAVDESS and CREMA-D datasets.
The pretrained ASR dataset is Librispeech (960 hours)4, which
is a huge ASR dataset for self-supervised training.

III. EXPERIMENT SETUP

A. Datasets

We evaluate the proposed method on three datasets that
are standard for SER. First, RAVDESS [19] consists of very
clean and high-quality audio speech performed by 24 North-
American actors with eight emotional expressions. The top
benchmark of machine learning models for this dataset is from
Issa et al. with 71.61% for these eight emotions [20], which
employed a 6-layer convolutional neural network to analyze
an acoustic feature set includings the MMC set, tonnetz and
spectral contrast features. The second dataset, CREMA-D [21]
is a large speech dataset of six emotions with 7442 recordings
from 91 speakers with a variety of races and ethnicities (e.g.
African America, Asian, Caucasian, Hispanic, ...). However, its
sound quality is lower compared to RAVDESS but is a good
representation of real-world audio recordings. The state-of-the-
art accuracy is 67.8% for these six emotions from the TRILL
model [1]. Third, IEMOCAP [22] is a large conversational
speech dataset of 12 hours of speech from 10 speakers. In
the same paper [20], Issa et al. modified the CNN model and
achieved 64.30% accuracy on IEMOCAP dataset for seven
emotions. As IEMOCAP is very imbalanced (e.g. 2 samples
in the disgust class, 40 samples in the fear class, 1849 samples
in the frustration class, ...), we only use four classes of data
out of total eight classes namely happy, sad, angry, neutral.
We also use the same classes for all three datasets to have a
fair comparison. We filter out speech samples more than 10-
second long due to the limitation of the TRILL model. Table
III describes the number of samples in each emotion class.

Table III: Number of samples used for each emotion class.

Dataset RAVDESS CREMA-D IEMOCAP

Happy 192 1271 1041

Sad 192 1271 1084

Angry 192 1271 1103

Neutral 96 1087 1708

B. Classifier and evaluation

For the classifier, we use a dense neural network with the
ReLU activation function, Adam optimizer and Cross Entropy
loss. The network consists of two layers with 500 nodes in
each layer.

To evaluate the performance of the proposed models, we
split each dataset into two sets: 80% of the data for the training
set and 20% for the test set using stratified splitting to ensure
the proportion of each class in both sets. For training, we apply
10-fold cross-validation to get the best model to evaluate on
the test set. To measure the performance on the test set, we

4https://www.openslr.org/12

report three different metrics: unweighted accuracy (UA, or
micro-F1), unweighted-F1 (UF1, or macro-F1) and weighted-
F1 (WF1).

IV. RESULTS AND DISCUSSIONS

A. Feature sets comparison

In the first experiment, we extracted eight feature sets and
two embeddings; training the classification model separately
on each dataset RAVDESS, CREMA-D and IEMOCAP. Table
IV shows the result of this experiment. As seen in Table IV,
the models for TRILL, MMC, and all the proposed feature sets
namely MuSER, MuSERn, eMuSER and eMuSERn learn bet-
ter with the clean audio from the RAVDESS dataset compared
to the noisier CREMA-D and IEMOCAP datasets; while the
LLD sets seem to no benefit from the increase in data quality.

On the RAVDESS dataset, all the proposed feature sets
surpassed all the baseline acoustic feature sets. MuSER-PCA
approach yielded the highest accuracy with 86.67% UA, which
is equal to the deep learning embedding TRILL despite having
a smaller input feature size (380 compared to 512). Among all
the baseline approaches, MMC-PCA achieved the best result
with 80% UA, which is still 6.67% lower than MuSER-PCA.
While on RAVDESS, MuSER-based methods are better than
eMuSER-based ones, the latter gave more accurate results on
CREMA-D dataset.

On both CREMA-D and IEMOCAP, the TRILL embedding
is the most discriminative feature, which gave 75.1% and
71.56% UA, respectively. This is followed by eMuSERn-PCA
for CREMA-D with 71.73% UA, and eMuSERn for IEMO-
CAP with 67.91% UA. On average, TRILL also achieved
the best UA with 78% accuracy. eMUSERn-PCA yielded the
second-best UA with 75% accuracy, followed by MuSERn,
MuSERn-PCA, MuSER-PCA, and eMuSERn with 1 to 2%
lower results.

According to SpeechBrain5, Wav2vec2-PT was trained on
IEMOCAP with 5-fold cross-validation setting and reached
75.28% UA. When evaluating this pretrained model on
CREMA-D, it gave 50.63% UA and 43.5% WF1. Surprisingly,
it gave the lowest WF1 20.28% on the RAVDESS dataset,
which is a very clean and high-quality audio dataset. This
indicates overfitting and low generalizability. However, to have
a fair comparison with these results, we also need to conduct
cross-dataset evaluation on other features. We leave this for
future work.

Among all the LLD sets, GeMAPS is the best feature set for
SER achieving 55.39% and 61.76% WF1 on RAVDESS and
CREMA-D respectively, followed closely by eGeMAPS with
1-2% difference. On IEMOCAP, eGeMAPS performed better
than GeMAPS with 51.59% versus 49.76% WF1 in particular.
ComParE gave the worst performance among all feature sets
despite being the most extensive feature. Its WF1 results on
RAVDESS, CREMA-D and IEMOCAP are 21.03%, 23.25%
and 17.8%, respectively. When projecting the ComParE feature

5https://huggingface.co/speechbrain/emotion-recognition-wav2vec2-
IEMOCAP
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Table IV: Results of feature sets and embeddings on three datasets in percentage (%)

Dataset RAVDESS CREMA-D IEMOCAP Average

Feature UA UF1 WF1 UA UF1 WF1 UA UF1 WF1 UA UF1 WF1

ComParE 31.11 18.37 21.03 30.41 22.94 23.25 34.62 12.86 17.80 32 ±16 18 ±10 21 ±11
ComParE-PCA 30.37 19.32 22.06 31.84 21.64 22.37 34.72 27.26 29.88 32 ±16 23 ±12 25 ±13

eGeMAPS 57.78 47.11 54.02 60.00 58.45 58.57 52.63 50.68 51.59 57 ±29 52 ±26 55 ±28
eGeMAPS-PCA 42.96 39.54 42.71 39.29 38.13 38.56 38.56 35.95 37.30 40 ±20 38 ±19 40 ±20
GeMAPS 57.78 50.42 55.39 62.14 61.56 61.76 51.01 49.11 49.76 57 ±29 54 ±27 56 ±28
GeMAPS-PCA 41.48 38.16 40.27 42.35 41.83 41.90 40.18 38.09 39.25 41 ±21 39 ±20 40 ±20

MMC 79.26 78.15 79.34 65.00 65.01 65.24 67.51 67.30 67.31 71 ±36 70 ±36 71 ±36
MMC-PCA 80.00 80.01 79.64 60.82 59.71 59.99 57.59 57.29 57.38 66 ±35 66 ±34 66 ±34

MuSER 82.22 80.30 81.98 66.53 65.59 65.99 65.69 65.40 65.59 71 ±37 70 ±36 71 ±36
MuSER-PCA 86.67 86.13 86.77 66.63 66.11 66.31 67.00 67.07 67.08 73 ±38 73 ±38 73 ±38
MuSERn 84.44 83.12 84.40 69.29 69.17 69.20 67.71 67.51 67.58 74 ±38 73 ±37 74 ±38
MuSERn-PCA 86.67 86.01 86.75 67.04 66.59 66.81 65.69 65.61 65.74 73 ±38 73 ±38 73 ±38

eMuSER 84.44 83.93 84.50 66.63 65.98 66.19 65.18 65.02 65.20 72 ±37 72 ±37 72 ±37
eMuSER-PCA 83.70 82.64 83.77 64.69 64.34 64.53 62.75 62.47 62.93 70 ±36 70 ±36 70 ±36
eMuSERn 82.96 81.26 82.83 67.45 67.01 67.41 67.91 68.06 67.88 73 ±37 72 ±37 73 ±37
eMuSERn-PCA 84.44 84.17 84.52 71.73 71.37 71.57 67.61 67.33 67.57 75 ±38 74 ±38 75 ±38

TRILL 86.67 85.88 86.77 75.10 75.17 75.31 71.56 71.52 71.66 78 ±39 78 ±39 78 ±39
Wav2vec2-PT 32.59 19.62 20.28 50.63 43.78 43.50 75.28† – – 53 ±32 – –

Notation: bold-underline: best results, underline: second-best results, italic: evaluation of SpeechBrain’s classifier pretrained on IEMOCAP.
†: 5-fold cross-validation result from https://huggingface.co/speechbrain/emotion-recognition-wav2vec2-IEMOCAP

into a lower dimension space using PCA method, the WF1
results on RAVDESS and IEMOCAP increased by 1.03% and
12.08% respectively, while the WF1 on CREMA-D slightly
decreased by 0.88%.

The PCA method increased the average UF1 classification
results for ComParE, MuSER, eMuSERn by 5%, 3% and
2% respectively. On the clean speech dataset RAVDESS, this
simple dimensionality reduction method also enhanced the
UF1 of the ComParE, MMC, MuSERn and eMuSERn by 1 to
3%, especially 6% on the MuSER model. The MuSER-PCA
model also surpassed the MuSER model on the CREMA-
D and IEMOCAP. PCA’s most significant accuracy boost is
on the ComParE model with the IEMOCAP dataset, which
is 14.4% UF1. However, the PCA method does not always
guarantee its effectiveness, especially with the GeMAPS and
eGeMAPS features.

B. Model size comparison

Table V describes the model sizes. For all acoustic audio
features (music-related features and LLD except ComParE),
the total training and testing time of the model without PCA
on a regular CPU (AMD Ryzen 7 3700X 8-Core Processor) for
RAVDESS, CREMA-D and IEMOCAP datasets took less than
12, 55 and 120 seconds respectively. It needs less than 10ms
for inference with the model size below 6MB. To sum up,
the proposed method with one of the proposed music-related
feature sets, and the 2-layer neural network model has shown
its effectiveness and efficiency for speech emotion recognition
across different datasets.

C. Ablation study

To further investigate the contribution of each feature in
the proposed feature sets, we extended the first experiment to

Table V: Model size comparison.

Feature Acoustic features TRILL Wav2vec2-PT

Model size 3 to 6 MB 92.56 MB 377.6 MB

individual features namely Mel spectrogram, MFCC and CQT
spectrogram, Chromagram as well as the log-power spectrum
variants of Mel spectrogram and CQT spectrogram. Table VI
illustrates the performance of each feature set without PCA
and with PCA 12.5% on three datasets.

It can be observed that without PCA, MFCC yielded the
highest accuracy on RAVDESS and IEMOCAP with 79.26%
and 65.79% UA respectively, while CQT spectrogram gave the
best result on CREMA-D with 67.45%. The main difference
of the CREMA-D dataset compared to RAVDESS and IEMO-
CAP is a large number of speakers with different ethnicities.
This reveals the importance of combining pitch and timbre
features for building a robust SER model.

On the performance of pitch-related features, the CQT
spectrogram surpassed the Mel spectrogram, especially the
CQT spectrogram average UA result is 6 to 7% higher than
the Mel spectrogram result with or without PCA. Chromagram
gave the lowest results among all individual features as the
dimension is only 12. However, it achieved 50% UA without
PCA, which is 18% higher on average when compared to
ComParE with a much larger set of 6,373 LDD features.
These results strongly support the effectiveness of pitch-related
features in speech emotion recognition.

On average, log-CQT spectrogram achieved 68% UA with
PCA, which is 1% higher than MFCC and log-Mel spec-
trogram. The transformation into a normalized logarithmic
representation significantly improved the performance of CQT
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Table VI: Results of each feature with and without PCA in percentage (%).

Dataset RAVDESS CREMA-D IEMOCAP Average

Feature UA UF1 WF1 UA UF1 WF1 UA UF1 WF1 UA UF1 WF1

No PCA
MFCC 79.26 77.87 79.24 63.67 63.24 63.53 65.79 66.02 65.89 70 ±08 69 ±08 70 ±08
Mel 54.07 52.43 52.74 61.94 61.69 61.81 53.74 52.87 53.52 57 ±05 56 ±05 56 ±05
Log-Mel 60.74 48.85 56.02 63.37 63.63 63.82 57.39 57.27 57.32 60 ±03 57 ±07 59 ±04
CQT 66.67 62.17 65.25 67.45 67.49 67.65 57.09 56.70 57.00 64 ±06 62 ±05 63 ±06
Log-CQT 76.30 75.44 76.19 62.86 62.44 62.62 63.26 62.83 62.85 67 ±08 67 ±07 67 ±08
Chromagram 54.81 53.58 54.88 50.20 49.61 49.92 43.83 42.97 43.62 50 ±06 49 ±05 49 ±06

PCA 12.5%
MFCC 85.19 84.36 85.49 60.20 59.86 60.05 56.78 56.56 56.79 67 ±16 66 ±15 67 ±16
Mel 54.81 44.20 50.73 55.61 54.44 54.67 48.18 47.40 47.88 53 ±04 49 ±05 51 ±03
Log-Mel 80.00 78.19 80.11 62.86 62.63 62.83 59.01 58.71 59.08 67 ±11 66 ±10 67 ±11
CQT 57.04 56.03 56.27 62.76 62.37 62.46 56.38 55.92 56.26 59 ±04 58 ±04 58 ±04
Log-CQT 80.00 78.79 79.71 64.18 63.89 64.11 59.41 59.48 59.36 68 ±11 67 ±10 68 ±11
Chromagram 46.67 42.19 42.19 54.59 54.99 55.21 44.53 38.18 40.37 49 ±05 45 ±09 46 ±08

Notation: bold-underline: best results, underline: second-best results.

and Mel spectrogram by 3% without PCA, and by 9-14% with
PCA. This emphasizes the importance of perceptual loudness.

V. CONCLUSIONS

This research gave a detailed analysis of audio-based fea-
tures and their performance on the RAVDESS, CREMA-
D and IEMOCAP datasets in emotion classification. Based
on the psychology evidence on the similarity in the human
perception of emotional speech and music, we proposed new
sets of music-related audio features for SER. Our method
achieved comparable results with the deep learning model
embedding TRILL despite being up to 15 times smaller in
model size. The ablation study showed that without PCA,
while MFCC is the best feature for RAVDESS and IEMOCAP,
CQT can handle a large number of speakers with different
ethnicities from the CREMA-D dataset. Thus, the combination
of pitch and timbre features is crucial to distinguish emotional
speech. The limitation of this method is its sensitivity towards
background noise, which can be deduced based on the results
of the CREMA-D and IEMOCAP datasets. In conclusion, the
proposed method is effective in terms of accuracy and model
size for basic emotion detection from audio speech.

Nevertheless, there is still room for improvement over the
model robustness against noise. Regarding feature extraction,
we can fine-tune the parameters of the DFT and CQT kernels
as well as filterbanks together with the neural network model
via gradient descent to learn higher discriminative features and
reduce the sensitivity to noise [14]. Another suggestion is to
replace PCA with other non-linear dimensionality reduction
methods such as autoencoders. This can enable the model to
learn the underlying manifold structure of data to improve the
classification result.
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