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Abstract—Audio applications involving environmental sound
analysis increasingly use general-purpose audio representations,
also known as embeddings, for transfer learning. Recently,
Holistic Evaluation of Audio Representations (HEAR) evalu-
ated twenty-nine embedding models on nineteen diverse tasks.
However, the evaluation’s effectiveness depends on the variation
already captured within a given dataset. Therefore, for a given
data domain, it is unclear how the representations would be
affected by the variations caused by myriad microphones’ range
and acoustic conditions – commonly known as channel effects.
We aim to extend HEAR to evaluate invariance to channel effects
in this work. To accomplish this, we imitate channel effects by
injecting perturbations to the audio signal and measure the shift
in the new (perturbed) embeddings with three distance measures,
making the evaluation domain-dependent but not task-dependent.
Combined with the downstream performance, it helps us make
a more informed prediction of how robust the embeddings are
to the channel effects. We evaluate two embeddings – YAMNet,
and OpenL3 on monophonic (UrbanSound8K) and polyphonic
(SONYC-UST) urban datasets. We show that one distance
measure does not suffice in such task-independent evaluation.
Although Fréchet Audio Distance (FAD) correlates with the trend
of the performance drop in the downstream task most accurately,
we show that we need to study FAD in conjunction with the other
distances to get a clear understanding of the overall effect of the
perturbation. In terms of the embedding performance, we find
OpenL3 to be more robust than YAMNet, which aligns with the
HEAR evaluation.

Index Terms—Self-supervised learning, robust audio embed-
dings, transfer learning, acoustic perturbations, urban sound

I. INTRODUCTION

The scarcity of a large amount of labeled data for supervised
learning in applications related to environmental sounds has
popularized the use of representation learning and transfer
learning [1]–[5] in such applications. As part of this learning
paradigm, a network is pre-trained on an upstream task,
which has the availability of large datasets to learn generic
representations or embeddings that are transferable across a
variety of related target downstream application(s). Bengio et
al. [6] defines good representations as one that are expressive
enough to capture a considerable number of possible input
configurations, are invariant to most local changes of the input,
and disentangles the factors of variation in the input.
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With the increase in the number of learning frameworks and
architectures to learn such invariant representations, there is
a need for evaluation benchmarks to test the generalization
of the embedding models and empirically compare them.
Holistic Audio Representation Evaluation Suite (HARES) [7]
and Holistic Evaluation of Audio Representations (HEAR)
[8] are two efforts at this front that test the invariance of
various audio representations to downstream domains and
tasks. The HEAR challenge, in particular, is the most extensive
effort to date and includes an evaluation of twenty-nine audio
embedding models on nineteen diverse downstream tasks.
However, both HEAR and HARES evaluation methodologies
have several limitations. Firstly, they are dependent on the
included tasks, as well as the quantity and distribution of
the training and test sets of those tasks. Thus, they are not
informative as to how the embeddings will perform on unseen
tasks. Secondly, they do not provide information on the sta-
bility of the audio embeddings in response to specific changes
in the same data domain. Hence, not only might they give
a limited understanding of what to expect when employing
them in real-world applications under various conditions, but
they also require inspection and analysis of their test sets
to gain understanding of their stability. Lastly, they rely on
the availability of annotated data for evaluation. This has the
inherent drawback of requiring human annotations, especially
for data collected from real-world deployments [9], [10].

In this work, we propose a path to address these limi-
tations by using the following two steps in the evaluation
framework: (i) we propose an alternative, yet complementary,
testing scenario that includes invariance to channel effects.
To accomplish this, we artificially degrade audio signals
[11]–[13] by applying different mathematical transformations
or perturbations, and (ii) we leverage distance metrics that
quantify the shift in the embedding space directly, making the
evaluation independent of the task but still dependent on the
data domain. We correlate the metrics with the downstream
results to corroborate the findings and establish the relationship
between the perturbations and the downstream evaluation.
We leverage two publicly available audio embedding models,
OpenL3 [1] and YAMNeta, to build on the findings from the

ahttps://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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Fig. 1: Pipeline to evaluate the robustness of embeddings by
calculating distance between the original and the new audio
embeddings, E and Ê, respectively.

HEAR challenge, where OpenL3 and YAMNet are among the
best and worst-performing models, respectively.

Our contributions can be summarized as follows:
1) We propose a methodology to evaluate the robustness of

audio embeddings against channel effects, both qualita-
tively and quantitatively, in a task-free setting.

2) We investigate the effectiveness and limitations of cor-
relating three distance measures quantifying change or
shift in pairwise distances, topology, and distribution
with the downstream performance.

3) Mimicking channel effects with four fundamental per-
turbations: high pass (HP) and low pass (LP) filtering,
gain, and reverberation, we show that embeddings are
more robust to changes in gain and reverberation than
in HP and LP.

4) HEAR shows OpenL3 to perform better than YAMNet.
We get a similar conclusion, but with a closer inspection
of the performance differences in each of the four
perturbations.

II. ROBUSTNESS TO PERTURBATION

Let X = {xi}ni=1 be a dataset of n audio snippets and θ be
the parameters of the upstream embedding model f(x, θ) →
ex that maps audio input x to a d-dimensional embedding ex ∈
Rd. E = {ei}ni=1 is the set of all such n embeddings. Also,
consider a transformation function ϕ(x) → x̂ that perturbs
the audio signal x to x̂. The new audio set X̂ then produces a
new embedding space Ê = {êi}ni=1. The robustness problem is
then stated as follows: the embedding space Ê produced by the
upstream model on the perturbed audio set should not change
the semantics of the audio signal i.e. distance between E and
Ê is small. We list different distance metrics to measure the
variation between the two embedding spaces in section III-A.

We investigate four perturbations, namely high pass and
low pass filtering, gain and reverberation. These perturbations
are inspired by channel effects that arise when deploying
environmental audio sensing devices, and simulate varying
conditions both in the acoustic propagation from the source to
the recording device and in the recording device itself. How-
ever, these perturbations are common in many microphone
recording situations. Table I lists the range of values on which
we explore each perturbation.
High and Low Pass filtering: Since low-cost microphones
may not have a full frequency range response, we use high-

pass and low-pass filters to approximate various frequency re-
sponses to test the representations’ ability to be mic-invariant.
While several applications focused on urban sound monitoring
[14] use MEMS mics with a frequency range of 20-20k Hz,
the sampling frequency of 44.1 or 48 kHz is an expensive
option for low-power micro-controllers. Recently, Lopez et
al. [15] leverage mics with a frequency range of 63-8k Hz
instead. Besides the inherent differences in a mic’s design,
external factors like water, wind, and dust can change the
frequency response. For example, water clogged inside the
mic windscreen can attenuate the signal, especially at higher
frequencies [16] and low pass filters can also simulate this.
Reverberation: Typically, the sources of environmental
sounds are outdoors, for example, construction noise, honking,
and aircraft, to name a few. However, people hearing these
sounds can be in outdoor areas like streets with many buildings
or indoor areas with walls and furniture. Sound waves reflect
from such obstacles several times before reaching the ear. The
sound reflections mix to create what is known as reverberation.
We evaluate the representations for different listener environ-
ments by modeling the reverberation time of space, defined as
the time required for the sound level to decay by 60 dB after
the signal has stopped.
Gain: Due to infrastructure requirements, it is common to
place the microphones far from the sound sources when
collecting environmental sounds. For a spherical wave, the
sound pressure level (SPL) decreases by 6 dB (one-half) per
doubling of distance from the source. For line sources such
as traffic noise, the decay rate varies between 3 and 4 dB
[17]. In order to test the near-field performance of the learned
representations, we vary the gain of the signal.

TABLE I: Range of values for each perturbation (pert.) type
for OpenL3 and YAMNet

Pert. Type Pert. Values
High Pass {100, 200, 400, 800, 1600, 4k} Hz
Low Pass {8k, 4k, 1600, 800, 400} Hz

Reverberation {25, 50, 75, 100} %
Gain {3, 6, 10, 20, 30} dB

III. EXPERIMENTAL DESIGN

Fig. 1 shows the pipeline to calculate a distance measure to
quantify the effect of a perturbation ϕ on an embedding space
E.

A. Distance Metrics to Evaluate Robustness

We utilize a toy dataset of five random coordinates in
Fig. 2 to motivate the usage of different distance measures.
The dataset is intended to be simple and illustrative rather
than directly related to the perturbations in this paper. Even
minor perturbations, such as those in 1a and 1b, change the
pairwise distances between the old and new points. However,
the distance between them remains preserved in the new space,
which is evident from the hierarchical clustering in 2a and 2b.
Similarly, scaling by a constant factor of 2 clusters the new
points the same as that in the original dataset but changes
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Fig. 2: Cosine Distance (CD), Fréchet Audio Distance (FAD) and Cophenetic Correlation Distance (CPCD) to measure change
in pairwise distance, distribution and topology respectively for a toy dataset of five coordinates. The text on the dotted blue
line denotes the distance between the original (orig) and the perturbed (pert) mean.

the mean of the new distribution. Motivated by the unique
qualitative and quantitative information provided by various
metrics, we investigate distance measures to evaluate the shift
between the original and the perturbed embeddings in three
aspects: (1) pairwise distances, (2) relative pairwise distances
(as in hierarchical clustering topology), and (3) distribution.
Pairwise: When comparing embeddings, a common method
has been to use some pairwise distance. We choose cosine
similarity because it is common to normalize embeddings
before training the downstream classifier. To change similarity
into distance, we use cosine distance (CD). To generate a
single distance value for the full embedding set, we find the
mean of all the CDs.
Topology: As shown in Fig. 2 2a-2d, there may be scenarios
in which pairwise distances might significantly change, even
when the relative distances between the data points do not vary
as observed in clustering. In such situations, classes may still
be well-separated in the embedding spaces, but new data may
be required to represent those class distributions. To make the
pairwise study less stringent and distance-free, we evaluate the
total change in the pairwise proximity of the embeddings in E
and Ê. We use agglomerative clustering with Euclidean dis-
tance and average linkage criterion to create dendrograms for
the original and perturbed embeddings. The branching patterns
(also known as topology) in the two dendrograms might differ
in terms of the embedding positions in the leaf set. To quantify
the difference, we calculate the Pearson correlation coefficient
(PCC) (Equation 1) between the cophenetic distance matrices,
Co and Cp, for the dendrograms corresponding to the original
and perturbed embeddings. We utilize Equation 2 to convert
the correlation into a distance metric, which we refer to as
cophenetic correlation distance (CPCD).

PCC =
cov(Co, Cp)√
var(Co)var(Cp)

(1)

CPCD = 1− PCC (2)

where cov and var correspond to covariance and variance,
respectively.
Distribution: In order to get the variation in the distribution
within the embedding space, we leverage the Fréchet Audio
Distance (FAD). Initially proposed for music enhancement
application, Kilgour et al. [18] use FAD to compare the
embedding statistics generated on a large reference set of
clean music with the embedding statistics generated on an
evaluation set of enhanced noisy signals. In this work, we use
FAD to compare the statistics between the original and the
perturbed embedding set. The Fréchet distance (also known
as Wasserstein-2 distance) between the Gaussian of the orig-
inal embeddings No(µo,Σo) and the perturbed embeddings
Np(µp,Σp) is then computed as:

FAD(No,Np) = ||µo−µp||22+ tr(Σo+Σp−2
√

ΣoΣp) (3)

where µ represent the mean, Σ the covariance matrix, and tr
the trace. Unlike the cosine and the correlation distance, FAD
is oblivious to the way the embeddings are related to one other,
as illustrated in 1c and 1d in Fig. 2. It is primarily used to
investigate the change in the overall embedding distribution.

B. Datasets

We study the robustness of both OpenL3 and YAMNet
for two popular datasets, namely UrbanSound8K (US8K)
[19], and SONYC Urban Sound Tagging (UST) [20]. These
datasets complement those used in the HEAR challenge for
environmental sound. For the UST dataset, we use all the
1380 recordings with verified annotations in v2.3. As for the
US8K samples, we use all the ∼8k samples. To simplify the
analysis, we sample one embedding per clip, which we select
by computing the sound pressure levels (SPL) and retrieving
the embedding where the SPL is highest. The assumption
behind this is that the highest SPL level correlates with the
presence of a labeled sound source.
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(a) (b) (c)

Fig. 3: CD, CPCD, and FAD for US8K and UST datasets for four perturbation types. The x-axis values for each perturbation
range from low to high changes. The sampling frequency of YAMNet (Y) and OpenL3 (O) is 16kHz and 44.1kHz, respectively.

C. Metrics for Downstream Evaluation

We assess the effect of perturbation not only on the embed-
dings but also on the classification metrics on the downstream
datasets, i.e. US8K and UST. Specifically, we train a logistic
regression model with the original embeddings E and evaluate
its performance on embeddings Ê perturbed with different
types and values.
US8K: We employ cross-validation accuracy as well as mean
silhouette score to compare the quality of classification and
clustering of the embeddings before and after the perturbation.
UST: As for the UST dataset, we use macro-averaged areas
under the precision-recall curve (macro-AUPRC) as the pri-
mary evaluation metric. We do not use silhouette analysis for
UST because it is a multi-label dataset and one embedding
can be part of multiple classes at the same time.

IV. EVALUATION

A. Comparison of representation types

Looking at Fig. 3, for both CD and CPCD, YAMNet shows
a larger distance (higher sensitivity) as compared to OpenL3.
To get a deeper understanding of YAMNet’s sensitivity to
pairwise relations, we calculate the silhouette scores of the
embeddings of each class in US8K (c.f. Section IV-B).

Although OpenL3’s distribution show more variation than
YAMNet for US8K (c.f. Fig. 3c) when perturbed, large values
of CPCD for YAMNet in Fig. 3b indicate that the YAMNet’s
pairwise relationships change significantly in the perturbed
space, and can possibly affect the downstream performance.
Fig. 4b confirms this hypothesis. Note that in order to re-
scale FAD to a 0-1 scale, we use Min-Max scaling within a
dataset to normalize FAD scores, which somewhat skews the
comparison but has no effect on the overall trend.

B. Distance metrics and downstream evaluation

We compare the trends of the distance measures with the
downstream evaluation metrics. In Fig. 4a, we observe that
YAMNet produces a negative silhouette score of −0.14 even
for the original representations, meaning that embeddings of
the same class lack the two qualities of separability from
embeddings of other classes and cluster compactness. Even

(a)

(b)

Fig. 4: (a) Silhouette scores of OpenL3 and YAMNet for
US8K. (b) compares the classification accuracy of the original
(orig) and perturbed (pert) embeddings for US8K and UST.

a tiny modification can change the pairwise groups in this
scenario. This is also reflected in Fig. 3a and Fig. 3b.

The trends in FAD closely approximate the performance
drops in Fig. 4b as the severity of the perturbation increases.
We notice that OpenL3 has a steeper change in accuracy
than YAMNet. Nevertheless, even when OpenL3 produces the
lowest accuracy (high pass at 8k Hz), it is better than YAMNet.
One can infer the same by considering both FAD and CPCD
simultaneously, as stated in Section IV-A. The mean CD might
have a neutralizing effect. For an example, let us consider
two embeddings, e1 and e2 in E. If the CD decreases for the
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(e1, ê1) pair by 0.3 but increases for (e2, ê2) by 0.3, the mean
change would remain unaffected. Both CD and CPCD utilize
pairwise information and are comparatively more sensitive to
noise and outliers. We recommend always supplementing such
pairwise metrics with information from other robust metrics
like FAD.

Furthermore, because FAD best reflects the performance
loss, it may be used for data augmentation to make the down-
stream classifier more robust. When it comes to determining
what values to utilize for augmentation, we can see from FAD
(c.f. Fig. 3c) that each embedding and dataset combination
appears to have different inflection points, i.e., where changes
in distance and performance drop more dramatically. We
believe that this value is a useful indicator of how much
perturbation to use for the augmentation, as larger values
may be associated with dramatic changes in the signal, while
smaller values may not make a significant difference. In future
research, we’ll investigate the use of inflection points for
augmentation.

C. Comparison of perturbation types

The embeddings are more robust to gain and reverb than
to high and low pass filtering. This is not surprising because
these perturbations do not significantly change the information
contained in the signal (much less than low and high pass
filtering), so the fact that the embeddings are robust to them
is a good indication that the models are doing what we
expect and they are mainly learning semantic information. The
inflection point for FAD and CPCD at a gain of 10 dB indicates
the presence of harmonic distortions associated with clipping.
It is a bit surprising how much OpenL3 embeddings change
in response to low pass perturbations. We hypothesize this is
due to a codec-related “shortcut” [21] in the self-supervised
audio-visual correspondence task in which the model finds
a relationship between high-frequency absence and image
artifacts in low-bit-rate encodings.

V. CONCLUSION

We employ three distance metrics to estimate the effect of
channel effects on two representations, OpenL3 and YAMNet.
We demonstrate that the downstream performance and the
distance measures are complementary. Limiting the evaluation
to downstream performance precludes a more in-depth study
of the reason and extrapolation of the findings to other
real-world test scenarios. Similarly, the analysis of distance
measurements can be misleading when using only one metric.
In our study, the combination of FAD and CPCD gave the
most valuable insight and was representative of downstream
trends. We recommend using FAD to choose among different
perturbations for augmentation to make sound event detection
models more robust.

In future work, we intend to repeat this study on a wide
variety of embeddings and datasets and extend the analysis
to include correlations between distance metrics and different
sound event classes.
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