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Abstract—We present a new deep-learning-based non-intrusive
signal assessment method (NISA+) that performs a joint estima-
tion of a large set of speech signal parameters, including those
related to reverberation (C50, DRR, reflection coefficient and
room volume), background noise (SNR), perceptual speech qual-
ity (PESQ), speech intelligibility (ESTOI), voice activity detection,
and speech coding (codec presence and bitrate). We show that
neural embedding based combination of spectral features with
an LSTM and modulation features with a convolution neural
network enable NISA+ to achieve state of the art performance.
Particularly, for non-intrusive PESQ and C50 estimation, we show
around 15% relative reduction in estimation error compared to
our previous best results . We also show that NISA+ can be used
to perform targeted data augmentation for generating training
data for ASR that matches the signal characteristics extracted
from a small sample of data recorded in a target room acoustic
environment. We show that a 9.6% word error rate reduction
can be achieved relative to an ASR model trained with random
augmentation.

I. INTRODUCTION

In real world applications, clean speech can be corrupted
by many factors including room reverberation, additive noise
and coding artifacts, degrading the quality and intelligibility
of the signal. The estimation of parameters characterizing
these corrupting factors, as well as the perceived quality
and intelligibility of the speech, has important applications
including Automatic Speech Recognition (ASR) [1], [2],
audio forensics [3], text-to-speech (TTS) [4] and speaker
diarization [5]. A number of intrusive methods for estimating
such parameters have been proposed. However, in real world
deployments, the requirement of a reference signal in such
non-intrusive methods is typically not fulfilled. This has led
to the development of data-driven, non-intrusive methods in
the recent decade.

The process of room reverberation can be modeled as a
convolution between anechoic speech and a Room Impulse
Response (RIR) [6]. The effects of reverberation have typi-
cally been characterized by the following intrusive parameters
(extracted from an RIR): reverberation time (T60), clarity index
(C50) and Direct-to-reverberant ratio (DRR) [6]. In addition,
a number of parameters can be defined for the simulation of
RIRs, including room volume and reflection coefficients for
reflective surfaces in a room. In [7], Parada et al. propose a
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non-intrusive method to estimate T60 and DRR based on the
Bidirectional Long Short Term Memory (BLSTM) architecture
and show good performance when tested on the Acoustic
Characterization of Environments (ACE) challenge [8] data.
Furthermore, in [9], [10], the authors showed that the C50

metric was most highly correlated with ASR performance,
a claim further validated in [11], where a method for joint
estimation of C50, Signal to Noise Ratio (SNR), PESQ and
Voice Activity Detection (VAD) was proposed. A non intrusive
reverberation time estimator that uses a Convolution Neural
Network (CNN) architecture was presented [12].

Typically, speech is encoded via a codec to reduce the
transmission bandwidth. In [13], Scholz et al. present a codec
identification method based on Spectral Harmonic Decomposi-
tion (SHD) that achieves a classification accuracy of over 92%.
A more recent study [14] presents a non-intrusive algorithm
for codec bit-rate detection that achieves an accuracy of 95.4%
compared to 76.4% with the baseline algorithms.

The non-intrusive estimation of perceived speech quality is a
challenging task due to its subjective nature. Target parameters
used in previous speech quality assessment literature include
the Mean Opinion Score (MOS), the intrusive PESQ score [15]
and POLQA score [16]. In [17], the authors propose a deep-
learning-based non-intrusive method to estimate MOS directly.
They first train an auto-encoder for reconstructing the input
signal spectrum and then use the latent variables learnt by
the auto-encoder as input features to a multilayer perceptron
(MLP) that predicts MOS. More recently, Sharma et. al. [18]
proposed an LSTM-based method that estimates the intrusive
POLQA score, combining Mel-Frequency Cepstal Coeficients
(MFCC) and a compressed modulation domain feature set.
They show that their proposed method can predict POLQA
with a Mean Absolute Error (MAE) of 0.21. An early non-
intrusive estimator for speech intelligibility was proposed
in [19] but this remains a challenging task.

In the literature, non-intrusive methods typically estimate
either speech quality parameters, room acoustics or codec pa-
rameters individually. Our recent work [11] proposed a speech
assessment method–NISA (Non-Intrusive Speech Analysis),
which jointly estimates C50, SNR, VAD and PESQ using Mel
Filterbank features and a CNN architecture.

In this paper we propose a novel configuration of Mel
filterbank and modulation spectrum features using their neural
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representations as obtained with recurrent and convolution
network architectures, respectively. We also extend the NISA
method to perform a wider range of speech assessment tasks,
including codec detection (i.e. whether the input speech is
coded), bit rate estimation, speech intelligibility, room volume
and reflection coefficient estimation. Finally, we use the new
NISA+ method for guiding the data augmentation process for
training of an ASR system and show how it can be used to
perform room adaptation and achieve a nearly 10% word error
rate reduction when compared with random augmentation.

II. NISA METHOD

Here we describe the NISA+ method, starting with the
spectral and modulation features, followed by neural network
architectures, strategies for the fusion of the two feature
embeddings and the training setup.

A. Speech Features

1) Mel Filterbank Coefficients: The Mel Filterbank
Coefficients (MFB) are a popular spectral feature set that
is used in many speech signal processing applications and
are motivated by human auditory perception of speech [20].
These features are derived by applying multiple triangular
filters on a Mel-Scale to the power spectrum calculated from
the Short-Time-Fourier-Transform (STFT). We use a frame
size of 20 ms with a 5 ms time increment and apply 80 Mel
filters to the power spectrum.

2) Modulation domain features: The second feature set is
based on the Modulation Spectrum (MS), which captures the
modulation information in speech. It has been shown that
linguistic information is primarily carried in the low-frequency
modulations of speech and MS features have been successfully
used in many applications including speech recognition [21]
and modeling speech intelligibility [22]. The MS features are
obtained by applying two successive STFTs to the speech
signal as described in [18]. We use the same acoustic frame
size and increment as the MFB feature extraction, with a
modulation frame size of 400 ms and modulation step size
of 200 ms. Given the selected acoustic step-size, the sampling
frequency of the modulation signal is 200 Hz.

B. Neural Network Architectures

The first architecture used in this study is the Long
Short Term Memory (LSTM) [23] network, which is a
Recurrent Neural Network (RNN) structure designed to
capture temporal dependencies in sequential data. Our LSTM
structure is composed of an input layer followed by three
hidden layers, arranged in a 108×54×27 cell topology, for each
time-step. The second architecture we explore is based on a
CNN structure proposed in [24] for speech presence detection
that is inspired by WaveNet [25]. In our implementation,
we use 8 layers of causal gated 1D convolution with
[16,8,8,16,16,16,16,32] filters. This is followed by a dropout
layer followed by a flattening operation. These architectures
were determined experimentally and the best performing

system uses MS features as the input to this CNN system
and MFB features to the LSTM. The output from these two
are fused and then input to a dense layer that is connected
to each of the estimation task workers, as described in more
detail in the following and depicted in Fig. 1.

1) Feature Fusion: We investigate two strategies for com-
bining the information from MFB and MS features. The
features are processed by an intermediate neural network,
the outputs of which are fused in different ways. The first
fusion strategy is a direct concatenation (Fig. 1a), where the
representations or embeddings learnt from MFB and MS are
concatenated directly, as follows:

XFused1 = [XMFB;XMS],

where XMFB ∈ Rd1 and XMS ∈ Rd2 are the embedding
vectors extracted by a certain neural-network from MFB and
MS respectively and XFused1 ∈ Rd1+d2 is the fused embedding
that combines the information from both features. The second
fusion strategy (Fig. 1b) implements a gating block before
concatenating the two feature embeddings:

XFused1 = [XMFB;XMS]

w1 = σ(WT
1 XFused1 + b1)

w2 = σ(WT
2 XFused1 + b2)

XFused2 = [w1 ∗XMFB;w2 ∗XMS]

where XFused1 ∈ Rd1+d2 is an intermediate vector which
will be used to calculate the weighting. W1 ∈ Rd1×1 and
W2 ∈ Rd2×1 are learned parameters. In this strategy, the
model will learn to control the relative weighting between the
representations learnt from two distinct speech features.

Fig. 1: The two feature embedding fusion strategies, (a) direct
fusion and (b) gated fusion. The symbol C represents concate-
nation, σ is the Sigmoid function and M is a multiplication.

2) Estimators: The NISA+ method is designed for the
joint assessment of reverberation, noise level, voice activity,
codec, speech quality and intelligibility parameters. For the
reverberation parameters, NISA+ estimates the C50, DRR,
room volume and reflection coefficient. We do not model the
T60 parameter as this is not defined for all RIRs. Instead we
estimate the room volume and reflection coefficient, which
allow simulation of RIRs from reverberant speech. For the
noise level, we estimate the Segmental Signal-to-Noise Ra-
tio (SSNR) in 20 ms frames. For speech quality estimation,
we use the intrusive PESQ method to label the utterances.
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Model WER WERR-Clean WERR-Random
Clean 47.30 - -

Random DA 12.80 72.9% -
NISA+ I DA 11.61 75.4% 9.2%
NISA+ II DA 11.57 75.5% 9.6%

TABLE I: ASR results for room adaptation using NISA esti-
mated parameters, guiding data augmentation. NISA I refers to
parameter selection using estimated C50 and SNR parameters.
NISA II also uses estimated reflection coefficient and room
volume parameters.

Similarly, for speech intelligibility estimation, we use the
recent ESTOI [26] algorithm. In this work, we use the Opus
codec [27], operating in the music and VoIP modes, at a range
of bit rates from 8 to 64 kbps. Lastly, a VAD estimation
is included to distinguish between speech and non-speech
segments. This label is obtained by assigning each 10 ms
frame to a binary class and then averaging those labels over the
context window (400 ms), thus obtaining a posterior, VADP,
in the range 0 to 1. Each estimation task is solved by an
individual worker composed of a single fully connected output
layer. There are 7 regression workers (C50, DRR, SSNR,
PESQ, ESTOI, VADP and Bitrate) and 1 binary classification
worker (codec detection). A VADP threshold of 0.5 is used
in this paper. It should be noted that, in the evaluation stage,
we report the accuracy and F1 score on the detection of voice
activity presence by using a threshold on the VADP posterior.

C. Training Strategy

The neural networks use a Mean Absolute Error (MAE)
loss function for the regression tasks and a cross-entropy loss
for the classification task. The Adam [28] optimizer is used,
with an initial learning rate of 10−4, that is halved every 28
epochs. The systems are trained for 140 epochs.

III. AUTOMATIC SPEECH RECOGNITION

In this section we describe experiments that highlight the
use of the NISA+ estimated acoustic parameters for the
purpose of room adaptation of an ASR system. We use an
attention-based encoder-decoder (AED) E2E ASR system that
uses an encoder based on ContextNet [29] and a single layer
LSTM decoder [30]. For all experiments reported here, the
ASR system is trained for 90 epochs. We highlight the appli-
cation of the proposed NISA+ method to extract reverberation
and noise parameters from a development set of utterances
recorded in a target room and then use those parameters to
perform a targeted data augmentation step. We compare this
approach with a baseline random augmentation of the training
data. The results for the different data augmentation sets are
presented in Section V based on data described in Section IV.

IV. DATA AND EVALUATION

A. NISA+ Training Data

We follow the data preparation methodology in [11]. The
training data is artificially generated by convolving clean
speech from the Wall Street Journal (WSJ) corpus [31] with

RIRs simulated using the Image method [32], followed by the
addition of noise and finally, processing it through an Opus
codec, resulting in the processed utterance, y(t), as follows.

y(t) = F (x(t) ∗ h(t) + n(t)),

where x(t) is the input clean speech at discrete time instant
t, h(t) is the RIR, n(t) is a noise source, x(t) ∗ h(t) is
the convolution between x(t) and h(t) and F is the codec
operation.

A total of 30 hours of clean speech from the WSJ corpus is
used for generating the training data, which is convolved with
18,400 simulated RIRs. The C50 values range from 0 to 25 dB
and the DRR from -15 to 13 dB. The noise sources include
Ambient, White, Fan, Babble and Music and are added in a
0 to 30 dB SNR range. This is followed by the application of
three codec classes (uncompressed, Opus-music, Opus-voip).
An Opus codec covering bit rates in the 8 to 64 kbps range
is applied in addition to uncompressed data (i.e. where no
codec is applied and is set a bit rate of 128 kbps). Finally, a
level augmentation in the -0.1 to -10 dBFS range is randomly
applied to each utterance to account for level differences in
real data.

B. ASR Training Data

The data used for training the ASR system in based on
460 hours of speech from the Librispeech [33] and Mozilla
Common Voice (MCV)1 data sets. A large set of RIRs are
simulated using the Image method [32], from which 300 RIRs
are selected and applied to the training data, followed by the
addition of ambient noise with a uniform random distribution
of SNR. The random augmented data set (Random DA) has
RIRs covering a C50 range of 3.3 to 17.6 dB and SNRs in the
5 to 30 dB range. The NISA+ I augmented data set (NISA+ I
DA) is based on selecting 300 RIRs covering a C50 range of
5.0 to 11.0 dB and SNRs in the 10 to 24 dB range, as estimated
by NISA+. The NISA+ II augmented data set (NISA+ II DA)
is based on a further selection of RIRs with a room volume
range in the range 30.2 and 44.1 m3 and reflection coefficients
in the range 0.84 to 0.92, as estimated by NISA+, in addition
to the C50 and SNR constraints as the NISA+ I DA set.

C. Test Data

In order to evaluate the NISA+ method, we use the test
sets described below including a playback recorded test set
for the purpose of ASR room adaptation evaluation.

1) ACE Test Set: We use a modified version of the original
ACE Challenge test-set [8], by processing the original data
through three codec conditions mentioned in the description
of the training data. The modified ACE challenge test set
contains the original (anechoic) speech material convolved
with measured RIRs and additive noise recorded in the same
location and rooms as the RIRs. We use this test set to evaluate
the NISA+ method’s performance. However, since the ACE

1https://commonvoice.mozilla.org/en
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MAE F1 Score
Model Features C50 (dB) DRR (dB) SSNR (dB) PESQ Score ESTOI Score BitRate (kbs) VAD codec
CNN MFB 2.14 3.22 4.65 0.30 0.07 11.26 0.92 0.89

LSTM MFB 2.10 3.09 6.32 0.29 0.07 11.88 0.94 0.87
CNN MS 2.34 3.36 4.07 0.28 0.07 7.70 0.93 0.91

LSTM MS 2.44 3.40 4.88 0.31 0.08 11.89 0.92 0.90
Joint-Direct Both 2.01 3.18 4.26 0.27 0.07 7.76 0.94 0.91
Joint-Gating Both 2.04 3.24 4.03 0.27 0.07 7.87 0.95 0.91

TABLE III: Model evaluation of C50 and DRR on the ACE test dataset and other parameters on the LibriSpeech test dataset.

RIRs are measured in actual rooms, we lack the reflection
coefficient labels for this data. We extract the ground truth
labels using the measured RIRs and the clean speech signals,
including C50 and DRR labels following the definition in [10].

2) Libri RIR Test Set: In order to properly test the rever-
beration metrics, including the room volume and reflection
coefficient estimates, we create a new test set based on speech
from the Libri test set [33] and simulated RIRs using the
image source method [32]. The simulated RIRs allow us to
cover a range of room volumes (28 to 54 m3) and reflection
coefficients (0.5 to 0.9). We note that such simulations use an
idealized physical setup in which all surfaces have the same
reflection coefficient at all frequencies. Nevertheless, this does
allow us to perform data augmentation effectively over current
approaches.

3) Libri Playback Test Set: This is a playback recording of
500 Librispeech utterances from the test-clean partition with
an 8 channel uniform linear array. In this paper, we use 13
utterances from one speaker as a development set from which
NISA+ parameters can be extracted and the remaining 487
utterances are used for testing the ASR systems, using channel
4 data (representing a single distant microphone). More details
of this test set can be found in [34].

D. Evaluation Metrics

In the following, P (n)e and P (n)t are the estimated and
true scores for a frame n of 5 ms duration. AS shown in
Table II, we use the Mean Absolute Error (MAE) metric for
the regression tasks and the F1 score for classification based
tasks (VAD and codec presence). The ASR performance is
measured in terms of the Word Error Rate (WER).

Metric Description

Mean Absolute
Error (MAE)

MAD = 1
N

∑N
n=1 |P (n)e − P (n)t|

F1 Score F1 = 2. precision.recall
precision+recall

Word Error Rate
(WER)

WER = Substituions+Deletions+Insertions
Substituions+Deletions+Correct × 100%

TABLE II: A summary of the evaluation metrics.

V. RESULTS

A. NISA+

Table III summarizes the NISA+ results, where we can see
that the single feature systems have their strengths and weak-

C50 (dB) DRR (dB) Room Volume (m3) Reflection Coeff.
2.16 3.05 6.43 0.12

TABLE IV: MAE results for the NISA+ reverberation param-
eters on the Libri RIR test-set, for the Joint-Direct NISA+
model with MFB and MS features.

nesses in estimating different parameters. The LSTM model
achieves better results with the MFB features while the CNN
model works better for the MS features. The MFB features
work better for C50, DRR and VAD estimation while SSNR,
Bitrate and codec parameters are more accurately estimated
with the MS features. This suggests that a combination of
the two speech features and the neural network models is
required to achieve the best overall performance across all
tasks. The last two rows in Table III show that the dual feature
and network models outperform all single-feature and network
models. Furthermore, since all models have a similar number
of trainable parameters (roughly 700k), this improvement
should be attributed to the fusion strategy. Given the slightly
increased model complexity introduced by the gating block,
the feature fusion based on direct concatenation is proposed
as the best solution. The C50 and PESQ performance of the
proposed direct feature embedding concatenation system is
16% and 15% better in relation to our previous system [11].
Table IV presents the results for the Libri RIR test set, where
the estimation performance of the additional reverberation pa-
rameters (room volume and reflection coefficient) is shown. As
seen, the C50, DRR, Room Volume and Reflection Coefficient
estimation errors are very competitive (we note that there isnt a
comparable system for reflection coefficient and room volume
estimation).

B. ASR Room Adaptation

Table I presents the ASR results for different data augmen-
tation criteria. It can be seen that the random data augmen-
tation (Random DA) system achieves a significant reduction
in WER when compared to the model trained with clean
speech (72.9% WERR). The two ASR models that use NISA+
parameter estimation to perform a targeted room adaptation
achieve an additional 9.2% to 9.6% WERR compared to
the randomly augmented model. As has been shown in the
past, the C50 reverberation metric is highly correlated with
WER [11], and here too we note that the NISA+ I DA model,
that is trained with selecting RIRs with the estimated C50

range performs very well, achieving a 9.2% WERR over the
random augmentation model. A more detailed selection of

133



RIRs based on additional pruning based on estimated room
volume and reflection coefficients gives only a small additional
improvement of 0.4%.

VI. CONCLUSIONS

We have presented a dual feature embedding based non-
intrusive speech analysis method which performs joint assess-
ment of ten acoustic signal parameters. Our novel approach
fuses spectral (MFB) and modulation (MS) information using
neural representations from recurrent and convolution neural
architectures. Compared to single feature and network ar-
chitecture based methods, this novel approach demonstrates
superior performance across all speech tasks investigated,
suggesting that the MFB and MS feature embeddings pro-
vide complementary information to each other. We show
that speech feature fusion based on the direct concatenation
achieves the best results while maintaining a relatively small
complexity. We also show how the NISA+ system can be used
to perform room adaptation when training an ASR model, by
a guided data augmentation step leading to a 9.6% WERR
compared to a model augmented with a random selection
of acoustic parameters. This highlights the applicability of
our proposed method for data augmentation and analysis
applications in real world scenarios.
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