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Abstract—Acoustic environment plays a major role in the
performance of a large-scale Automatic Speech Recognition
(ASR) system. It becomes a lot more challenging when sub-
stantial amount of distortions, such as background noise and
reverberations are present. Of late, it has been standard to
use i-vectors for Acoustic Model (AM) adaptation. Embeddings
from Single Task Learned (STL) neural network systems, such
as x-vectors and r-vectors, have also been used to a varying
degree of success. This paper proposes the use of Multi Task
Learned (MTL) embeddings for large vocabulary hybrid acoustic
model adaptation in reverberant environments. MTL embeddings
are extracted from an affine layer of the deep neural network
trained on multiple tasks such as speaker information and room
information. Our experiments show that the proposed MTL
embeddings outperform i-vectors, x-vectors and r-vectors for
AM adaptation in reverberant conditions. Besides, it has been
demonstrated that the proposed MTL-embeddings can be fused
with i-vectors to provide further improvement. We provide results
on artificially reverberated Librispeech data as well as real world
reverberated HRRE data. On Librispeech database, the proposed
method provides an improvement of 10.9% and 8.7% relative to i-
vector in reverberated test-clean and test-other data respectively,
while an improvement of 7% is observed relative to i-vector when
the proposed system is tested on HRRE dataset.

Index Terms—Acoustic Modeling, Multi-Task Learn ing, ASR,
reverberation

I. INTRODUCTION

Research in Automatic Speech Recognition (ASR) has
been constantly evolving and improving ( [1] [2]) with the
advent of neural network based models thanks to the avail-
ability of very large training data and increased computational
resources. Specifically, Acoustic model (AM) adaptation, a
sub problem of ASR, has received immense interest from
researchers in recent past and thus has been well explored. Its
effectiveness lies in handling mismatched conditions between
the training and test data, which is achieved by adapting
on auxiliary information specific to the utterance, such as
channel, ambiance, speaker, language and accent, etc. This
concept has motivated several approaches, each tackling the
train-test mismatch problem differently but with one common
goal: a more efficient and robust ASR system. To achieve
such goal, AM adaptation using i-vectors [3] has been widely
used. The benefit of adaptation through i-vector stems from
the fact that i-vectors are able to capture various aspects of
“utterance specific” properties such as channel characteristics,
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noise, reverberation and speaker specific information, which
are helpful for adapting acoustic models [4] [5] [6]. Single
task learning (STL) based deep speaker embeddings such
as x-vectors [7] have been shown to outperform i-vectors
in the text-independent speaker verification/recognition task
and language-ID task [8]. It was shown in [9] that like
i-vectors, x-vectors are also capable of capturing speaker,
channel, and phrase related characteristics. Naturally, research
on the use of such deep STL embeddings for improving the
ASR performance has received a lot of attention recently.
The correlation between speaker embedding’s performance in
speaker recognition task and ASR was studied in [10]. Using
i-vectors, x-vectors and deep convolutional neural network
(CNN) embeddings [11], it was shown that x-vectors adapta-
tion did not provide any improvement in ASR performance. In
[12], x-vector like accent embeddings were used as auxiliary
inputs to ASR in order to eliminate the mismatch between
native and non-native speech utterances. In [13], a structured
overview of various adaptation techniques was presented with
a focus on domain, speaker and accent adaptation. Significant
improvement in low resource ASR was found in [14], when
i-vectors were replaced with x-vectors for adaptation. In [15],
AM adaptation by another STL embedding called r-vector
has been successfully shown to be effective for reverberant
conditions.

Although Multi-task leaning [16] has been around for a
long time, MTL embeddings have not been widely studied
for AM adaptations. MTL networks have been designed to
predict phoneme posterior as well as other tasks such such
speaker identity [17], noise [18] and accent [19], however
MTL embeddings stacked with feature vectors have not been
explored for AM adaptations. The approach where embeddings
are stacked with acoustic features provide an advantage where
embedding extractor can be trained using a different dataset
where meta-data of various tasks (attributes such as speaker
label, RIR label, etc.) is available in training data, which may
not be present in ASR training data. A multi-task learning
neural network can be trained to discriminate between several
tasks, such as gender, noise, reverberation and speaker etc.
Therefore, it is possible to extract an embedding from it
which will encode various parameters related to an acoustic
environment. This makes such embeddings eminently suitable
for AM adaptations. In this paper, we study AM adaptation
using MTL embeddings for large vocabulary ASR systems.
Our multi-task learning network is trained for both speaker
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and room size classification. A 256 dimensional embedding is
extracted from this network and is appended with the feature
vectors for AM adaptation. The main contributions of this
paper are:

• This work explores the less explored area of MTL em-
beddings for AM adaptations.

• We show that the proposed MTL embeddings are better
than both i-vectors and r-vectors for the ASR in rever-
berant speech.

• We further show that fusion of i-vector and the proposed
MTL embeddings provides the best performance gains.

II. MULTI TASK LEARNING BASED EMBEDDINGS

The STL based neural embeddings are trained with an
objective to discriminate between corresponding single task la-
bels. The r-vector and x-vector fall under such category, where
they are trained over room acoustics and speaker information
respectively. Such embeddings are usually extracted from the
last network layers. The neural embeddings are learned using
the TDNN layers [20] [10], followed by pooling layer, that
collects the temporal statistics. Finally, the embeddings are
then extracted from the subsequent affine layer.

Fig. 1: Proposed extraction of MTL embeddings with two
classifiers each for speaker (N1 number of speaker labels) and
room size (N2 number of room size labels) respectively.

Unlike the r-vectors and x-vectors, the proposed MTL embed-
dings are extracted from an architecture that is designed to
learn two task classifications: speaker information and room
size. Trained this way, the embeddings will encode both
speaker and room size information, which are important from
ASR perspectives. Unlike original r-vector [15] which takes
individual RIR as a classification label, we use room size as

our output label. It makes learning task simpler since RIRs
of similar room sizes are put in one class. It also enables use
of large no. of RIRs without increasing the output size of the
network. We compute the loss as follows:

Lmulti-task = λspeakerLspeaker + λroomLroom (1)

Each task loss { Lspeaker,Lroom} is weighted by loss weight-
ing {λspeaker, λroom} respectively. This formulation provides
us with the tool to adjust the level of domination a task will
play in AM adaptation. For example, if both losses are given
equal weightage, then both speaker and room size have an
equal role in AM adaptation. This way we can observe which
task is more important from the ASR perspective. We have
used the implementation employed in [21], for this work. 1.
The embedding extractor architecture is same as that of the x-
vector, up until the embedding layer, which has got 256 hidden
units. It is further followed by two hidden layers, with 256
dimension each, which is then projected on to the number of
classes. The classification task uses the standard cross entropy
loss.

III. EXPERIMENTAL SETUP

A. MTL Embedding extractor

In order to train the classifier, a mix of unaugmented
(anechoic) and reverberation augmented version of Full Lib-
ripseech data was constructed. The data is approximately 960
hours long and there are total 2338 speakers. To construct
reverberant classes, we use 80% of the total simulated Room
Impulse Responses (RIRs) taken from [22] [23] for reverberant
augmentation which have been labeled as small, medium
and large, based on the room size. In addition to it, we
add anechoic class to the 4 room size labels. A training
set is constructed by sampling each utterance to be from an
anechoic, small, medium or large room with equal probability.
Test set was also prepared, which is a mix of ane- choic and
reverberated version of the Librispeech test-clean. We make
sure that the simulated RIRs used in the test sets are different
from that used in the training sets. All the networks were
trained for 100,000 iterations on 350 frames of MFCCs with
30-dimension. The batch size was set as 500 and a small held
out set of training utterances is kept for validation. Stochastic
gradient descent with learning rate 0.2 was used, along with
0.5 momentum.

B. ASR systems

All experiments are conducted using ASR models trained
on Librispeech [24]. Initial experiments use reverberation aug-
mented version of Librispeech 100 hours subset. The best com-
binations obtained from this 100 hours subset is then tested
on the full Librispeech 960 hours dataset with reverberation
augmentation. The simulated RIR set used to augment both
Librispeech 100 and 960 hours respectively, is same as the
test RIR set used to evaluate MTL embedding extractor. For
evaluation of trained models, we use test-clean and test-other

1https://github.com/cvqluu/MTL-Speaker-Embeddings
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subsets of Librispeech. In order to evaluate the effectiveness
of room acoustic based AM adaptation, reverberated sets from
test-clean and test-other are prepared. For this purpose, we
use have used real RIRs: 271 from MIT impulse response
survey [25], 188 from voiceHome [26], 2325 from [27] and
327 from [22] [23] Since total number of real RIRs are
greater than utterances in test-clean and test-other, we made 3
different rev sets for each respectively. The naming convention
followed for such set is {test-c-rev-set-#, test-o-rev-set-#}-
{# = 1,2,3} for reverberated Librispeech test-clean and
test-other set respectively. Further, we have also shown our
results on HRRE database [28]. It consists of 13.4 hours clean
speech utterances taken from Aurora-4 which is recorded in 20
different highly reverberant real environments, with different
reflection coefficients and speaker-microphone pair distances.

All ASR systems trained using default kaldi recipes [22].
For Librispeech train-clean-100 set, we use kaldi Librispeech
recipe 2 and modify it as follows. We train GMM-HMM sys-
tem till tri4 using 100h subset and use it to obtain alignments
of training data. Then we use default chain recipe to extract
high-resolution MFCC features, train i-vector extractor and
i-vector extraction, and perform AM training using Lattice-
Free Maximum Mutual Information (LF-MMI) objective. We
modify the recipe to use single GPU and train the network for
4 epochs. For Librispeech 960h dataset, we use Kaldi default
recipe without cleanup part. Training is done using 2 parellel
jobs on two GPUs, while keeping all other parameters same.
During decoding, we use standard Language Models (LM)
available for each task. For Librispeech evaluation subsets,
we use small 3-gram LM and rescore the lattices generated
using large 4-gram LM.

IV. RESULTS AND DISCUSSION

A. Experiments on 100 hour subset of Librispeech

The experimental results reported in Table I provide an
insight into the performance of various embeddings in rever-
berated conditions. We use 100 dimensional i-vectors to set the
baseline, extracted in online manner during both training and
decoding, which is standard in Kaldi recipes. The x-vectors, r-
vectors and the MTL-embeddings are all of 256 dimensions. It
can observed that for reverberated speech, x-vector performs
better than i-vector and r-vector performs better than both.
However, the proposed MTL-embeddings perform the best
irrespective of the the weight assigned to speaker information
loss and room size loss. Out of the three sets of weights
tested by us, assigning weights 0.1 to speaker information
loss and 1 to room size loss provided the best performance
resulting in 1% absolute performance gain over the r-vectors.
The weights assigned in the loss function suggest that room
size information is more important for performance of ASR
systems in the case of reverberated speech. However, the fact
that MTL-embeddings provide similar performance to i-vector
and x-vector adaptation in test-clean condition suggests that

2https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/run.sh

we are not losing performance because of lesser assigned
weight to speaker information in the loss function.

Test Data WER
(in %)Embedding

test-clean test-c-rev-set-1 test-c-rev-set-2 test-c-rev-set-3 Average test-rev
i-vector 5.43 31.12 32.69 32.01 32.94
x-vector 5.46 28.76 30.81 30.08 29.88
r-vector 5.49 28.16 30.09 29.57 29.54

MTL (1,0.1) 5.42 27.87 29.78 29.36 29.00
MTL (1,1) 5.46 27.47 29.63 29.41 28.83

MTL (0.1,1) 5.42 27.26 29.32 29 28.52

TABLE I: Results (% WER) of online i-vector, x-vector, r-
vector and the proposed MTL embedding for various reverber-
ated conditions. MTL(w1,w2) signifies assignment of weight
w1 for speaker information loss and w2 for room size loss.

Test Data WER
(in %)Embedding

test-clean test-c-rev-set-1 test-c-rev-set-2 test-c-rev-set-3 Average test-rev
i-vector 5.43 31.12 32.69 32.01 31.94

ivector+xvector 5.23 27.85 29.39 28.95 28.73
ivector+rvector 5.37 28.04 30.02 29.41 29.15

ivector+MTL(1,0.1) 5.18 26.75 28.95 28.12 27.94
ivector+MTL(1,1) 5.29 26.62 28.51 28.15 27.72

ivector+MTL(0.1,1) 5.3 27.03 29.11 28.83 28.32

TABLE II: Results (% WER) of various fusion techniques. x-
vectors, r-vectors and the proposed embeddings were stacked
with online i-vectors for AM adaptation. MTL(w1,w2) signi-
fies assignment of weight w1 for speaker information loss and
w2 for room size loss.

The next set of experiments explored possibility of fusion
with online i-vectors. Table II tabulates the results from ex-
periments where x-vectors, r-vectors and and proposed MTL-
embeddings were stacked with i-vectors for AM adaptations.
Such fusion techniques invariably improved the performance
over online i-vectors. It seems to suggest that i-vectors alone
may not be sufficient for AM adaptations in reverberated
conditions. While r-vectors provided better performance than
x-vectors on their own (Table I), they were worse performers in
fusion. Stacking x-vectors with i-vectors resulted in an average
WER of 28.73% in reverberated conditions while stacking r-
vectors with i-vectors resulted in 29.15%. This shows that x-
vectors compliment i-vectors better than r-vectors. The pro-
posed MTL embeddings, however, comfortably outperform
both other fusion schemes. Proposed MTL embeddings with
equal weights to speaker information and room size loss was
the best performer when fused with i-vectors. This fusion
resulted in a relative performance gain of 13.27% over i-
vector alone and 3.5% relative improvement over i-vector and
x-vector fusion. Though the weights assigned to individual
task loss is important, it is noteworthy that all three selected
weights outperform x-vectors and r-vectors. Another obser-
vation is, although the training of MTL embedding extractor
and AM adaptation is done using simulated RIRs, still with
the help of this information it is able to perform quite good
on disjoint real RIR test set, and outperform i-vector by a
significant margin.
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B. Multi-task learning vs single-task learning

In the proposed MTL-embedding, the network is trained to
learn two tasks, speaker identity and room-size, with certain
weights assigned to the loss from each task. If the weight
of the loss from room-size is set to zero, then the proposed
embedding is akin to x-vector. If the weight from the speaker
identity is set to zero, then the proposed embedding is akin
to r-vector. Therefore, it would be interesting to see whether
multi-task embedding has any advantage over multiple single
task embedding stacked together. Table III presents the results
from our experiments exploring this. It can be seen that
the proposed MTL-embeddings outperform the stacked STL
embeddings. It seems to suggest that the MTL-embeddings
are better able to encode various aspects of the speech than
STL embeddings taken together. Comparing results of stacked
single task embeddings in Table III with the performance of
MTL embeddings reported in II, it can be observed that the
stacked STL embeddings do not outperform the MTL embed-
dings, irrespective of the weights given to individual task loss,
which underlines the advantage of multi-task learning for AM
adaptations.

Test Data WER
(in %)Embedding

test-clean test-c-rev-set-1 test-c-rev-set-2 test-c-rev-set-3 Average test-rev
i-vector 5.43 31.12 32.69 32.01 31.94

Stacked STL 5.36 26.93 29.95 28.68 28.52
ivector+MTL(1,1) 5.29 26.62 28.51 28.15 27.72

TABLE III: Results (% WER) for experiments comparing
stacked x-vector and r-vector and MTL-embeddings. Stacked
STL stands for i-vector+x-vector+r-vector and MTL(w1,w2)
signifies assignment of weight w1 for speaker information loss
and w2 for room size loss

C. Experiments on Librispeech 960h data

1) Results on RIR augmented Librispeech Test Set: In this
experiment, we evaluate the performance of MTL embeddings
on full Librispeech 960h dataset. The analysis on the smaller
Librispeech 100h data showed that fusion of i-vector and
other embeddings provided the best improvements. Also, it
was shown that MTL(1,1) provided the best performance
when used alongside i-vectors for AM adaptations. There-
fore, we compare three systems on the larger Librispeech
960h hours data: i-vector+r-vector, i-vector+x-vector and i-
vector+MTL(1,1). Experiments were conducted on the rever-
berated versions of both test-clean and test-other set. Table
IV presents the results for reververated test-clean data while
Table V presents the same for reverberated test-other data.

It can be observed that the results follow the same trend
as in the case of Librispeech 100h training data subset. In
both reverberated test-clean and test-other data, the proposed
MTL-embeddings provide superior performance reducing the
WER by 10.9% and 8.7% relative to i-vector on test-clean and
test-other data respectively. Over the stacked i-vectors and r-
vectors, the relative reduction in WER are 6.8% and 5.0% on
test-clean and test-other data respectively.

Test Data WER
(in %)Embedding

test-clean test-c-rev-set-1 test-c-rev-set-2 test-c-rev-set-3 Average test-rev
i-vector 4.06 21.11 22.86 22.57 22.18

i-vector+r-vector 3.98 20.08 21.89 21.55 21.17
i-vector+x-vector 3.87 19.25 21.16 20.82 20.41
ivector+MTL(1,1) 3.97 18.70 20.31 20.21 19.74

TABLE IV: Results (% WER) for experiments on full Lib-
rispeech 960h training data and reverberated test-clean set.
MTL(w1,w2) signifies assignment of weight w1 for speaker
information loss and w2 for room size loss

Test Data WER
(in %)Embedding

test-other test-o-rev-set-1 test-o-rev-set-2 test-o-rev-set-3 Average test-rev
i-vector 9.68 36.28 35.17 35.93 35.79

i-vector+r-vector 9.54 35.19 33.50 34.55 34.41
i-vector+x-vector 9.44 33.92 32.59 33.53 33.34
ivector+MTL(1,1) 9.40 33.17 31.84 33.05 32.68

TABLE V: Results (% WER) for experiments on full Lib-
rispeech 960h training data and reverberated test-other set.
MTL(w1,w2) signifies assignment of weight w1 for speaker
information loss and w2 for room size loss

D. Experiments on HRRE test data
Here we present the results on HRRE test set, which

contains real reverberant speech data. The dataset comes with
20 real recorded reverberant testsets with different reflection
coefccients and speaker-microphine pair. The final results
shown for each experiment on HRRE is the average across all
the 20 testsets. We analyze the performance of the proposed
MTL embeddings with Librispeech 100h and 960h models.

1) Results using Librispeech 100h Model: Table VI and
VII present the WERs from the experiments conducted using
model trained on Librispeech 100 hours. We first try to observe
what combination of weights: w1 and w2 of MTL(w1,w2)
embeddings works best on HRRE test set. Here also we

HRRE Test Data
Embeddings i-vector i-vector+MTL(1,0.1) i-vector+MTL(0.1,1) i-vector+MTL(1,1)

WER 25.16 23.71 23.48 22.91

TABLE VI: Results (% WER) for experiments on HRRE
dataset tested with Librispeech 100h model. MTL(w1,w2)
signifies assignment of weight w1 for speaker information loss
and w2 for room size loss

observe that out of the three sets of weights w1,w2 = (1,1)
provides the best performance, which is in line with the trend
observed on artificially reverberated Librispeech test set.

Further we compared the best performing set of weights:
w1,w2 = (1,1) and compared with x-vector and r-vector, and
here too we see that MTL(1,1) outperform others significantly.

HRRE Test Data
Embeddings i-vector i-vector+x-vector i-vector+r-vector i-vector+MTL(1,1)

WER 25.16 23.99 24.08 22.91

TABLE VII: Results (% WER) for experiments on HRRE
dataset tested with Librispeech 100h model. MTL(w1,w2)
signifies assignment of weight w1 for speaker information loss
and w2 for room size loss
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2) Results using Librispeech 960h Model: Table VIII
presents the results of HRRE data tested with Librispeech
960h model. Here also we see that the trend seen in artificially
reverberated Librispeech data is replicated, with the proposed
MTL embeddings outperforming others. It is noteworthy that
the r-vector is not performing as well as the x-vector and the
proposed MTL. In fact, out of the 20 different sub-sets in
HRRE, the proposed method outperforms the r-vector in all
the subsets, but 1.

HRRE Test Data
Embeddings i-vector i-vector+x-vector i-vector+r-vector i-vector+MTL(1,1)

WER 18.81 17.88 18.35 17.58

TABLE VIII: Results (% WER) for experiments on HRRE
dataset tested with Librispeech 960h model. MTL(w1,w2)
signifies assignment of weight w1 for speaker information loss
and w2 for room size loss

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced MTL-embeddings for AM
adaptation for improved ASR performance in reverberated
conditions. The MTL-embedding extractor was trained to
classify two tasks, namely, speaker identity and room size.
Training the MTL-embedding extractor followed by AM adap-
tation using simulated room impulse response, we observe that
MTL-embedding used for AM adaptation outperform i-vector
on test set built using real RIR, as well as on real reverb
environment recorded HRRE dataset. The proposed MTL-
embeddings provided superior performance to x-vectors and
r-vectors. We also showed, experimentally, that i-vectors and
our MTL-embeddings containing complimentary characteris-
tics of the speech signal and work best when they are stacked
together for AM adaptations. In future, as an extension, we
propose to study richer MTL-embeddings by training the
network for more tasks such as noise types, gender, etc. Also,
it would be interesting to study, if an optimal set of weights
exists, that can be assigned to loss from each tasks in a variety
of conditions.
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