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Abstract—We address the problem of separating classes of
sound sources given 1) an audio mixture and 2) a conditional
that represents the desired source to be separated. The proposed
Conditional Source Separation and Detection (CoSSD) network
operates on a defined set of classes during training and inference.
We show that our model is versatile in that it can be repurposed
for various separation tasks. We demonstrate its capability for
conditional audio source separation on the NIGENS dataset of
general sound events. We also show that, without modification,
the model can perform speech and non-speech component sepa-
ration using mixtures from the LibriSpeech and FSD50k datasets.
Finally, a key feature of the proposed CoSSD is that it performs
detection in addition to separation, making it a practical and
unified solution for query-based audio analysis.

Index Terms—Source separation, detection, audio scene anal-
ysis, speech, deep learning

I. INTRODUCTION

Rustling leaves, AC compressors, and rubbing hands all
sound very similar. Likewise, a monophonic phone ringtone
and a smoke alarm, or footsteps and knocking on a door
sound similar. These examples are from different “classes” of
sources and events which highlights the challenge in separating
and identifying sources that sound similar due to inter-class
similarity. Conversely, a fan in air sounds different than in
water. This is the same source, fan, but different events, where
the mechanisms involved, air vs. water, are different. While
the fan-in-water might be considered as the class propeller,
such fine class labelling can lead to class-explosion which
brings about challenges especially for supervised learning.
Sounds with very different events may have same source
labels, and different sources may sound similar. Indeed, the
space of sound events and sources is very large and any
form of meaningful analysis like source separation or detection
in practical applications requires constraining this space to a
tractable set of classes.

This paper investigates jointly separating and detecting spe-
cific sources of sound from mixtures. The proposed supervised
method is trained and performs inference on a defined set
of sound sources with the kinds of inter-class similarity and
intra-class variation discussed above. The model also detects
whether the specific query sound source is present in the
mixture. This allows the model to separate a finite set of
sources in mixtures from an open world since the separated
output can just be ignored if the source is not detected. We
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believe this is a unique feature of our model and represents
progress towards open-world source separation. We make the
following novel contributions:

« We propose a novel problem setting of jointly performing
conditional separation and detection of multiple sources
of interest in an audio mixture for non-speech and speech
problems.

o We present an end-to-end multiple-instance Conditional
Source Separation and Detection (CoSSD) Network to
solve the proposed problem and compare it with two
approaches.

e Our CoSSD model can be conditioned in two ways, one-
hot vectors and audio waveforms, to separate and detect
specific sound sources at varying levels of SNR.

o CoSSD is available in three model sizes that represent the
trade-off between performance and resource needs when
considering real-time application.

II. RELATED WORK

CoSSD has a highly modular design, partly inspired by
Conv-TasNet, a blind source separation framework proposed
by Luo and Mesgarani [1]. CoSSD consists of a conditional
embedding, an encoder and decoder, and a detection network.
It also has a Temporal Convolutional Network based masker
component from the Conv-TasNet that produces a single mask.
The encoder and decoder for CoSSD are STFT filterbanks that
perform better than trainable 1D-Conv layers as described later
in Table 3.

While we are unaware of work on joint separation and
detection, especially in the context of inter-class similarity
and intra-class variation, we identified two related conditional
source separation models. Gfeller et al. [2] propose a one-
shot learning based model to separate sound classes that the
model has never seen before using a U-Net [3] and a FiLM
[4] based conditional in the waveform domain. The strength
of this approach is that it does not need labeled training data
and it can separate multiple instances of sound classes in the
mixture. That is, it can separate either sound A or sound B in
a mixture of A and B depending on the conditional. However,
the paper does not discuss or address inter-class similarity
and intra-class variance since, like most one-shot methods,
the framework has no concept of class. Thus, it might be
challenged if the conditional is from the same class as the
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Fig. 1: Overview of CoSSD. The input conditional is a one-hot vector
or an audio waveform representing the class.

source but sounds a bit different. This is one of one-shot
learning’s main drawbacks thus keeping supervised methods
and large datasets relevant [5], [6]. The problem proposed
by Gfeller et al. [2] is also different from ours. We perform
separation and detection jointly while being robust to unseen
class mixtures, with applications in both general sound source
and speech foreground and background separation.

Kong et al. [7] is another related work which applies a
Sound Event Detection (SED) multi-class classifier before the
separation model in order to separate specific sounds from
a mixture. This model works in the time-frequency domain
through spectrograms. Again, this work focuses on a different
problem in that it only seeks to separate one source in a
mixture, the one detected by the classifier. In contrast, CoSSD
can separate multiple instances of sound sources in a mixture
which makes it suitable for a wide range of separation tasks in
the general sound and speech domains. Our model is further
distinguished in that it is trained in an end-to-end fashion and
operates in the waveform domain. Other related work includes
Ochiai et al. [8] who present event separation models albeit
with less noisy mixtures; Turpault et al. [9] who propose sound
separation as a pre-processing step to improve SED; and Tzinis
et al. [10] who show improved separation performance by
conditioning on the predictions of SED.

III. METHOD

CoSSD takes two inputs and provides two outputs. One
input is the mixture m = §;+5, that may or may not contain the
source of interest to separate. The second input is a conditional
vector ¢ that informs or queries the model which source to
separate. This conditional can be a one-hot vector or an audio
sample representing a specific sound-source class. The outputs
are the binary output d of a presence/absence detector and
the separated audio waveform §. Only when dis 1 do we
consider §. During training, § is set to a O-vector when the
conditional is absent in the mixture m. During inference, the
network will output § with very low amplitude O(107%) noise
when the conditional is absent which can be ignored since the
detector’s output d will be 0.

n_filters 256 256 192
Encoder kernel_size | 128 128 128
stride 64 64 64
n_filters 514 514 386
Decoder kernel_size 128 128 128
stride 64 64 64
n_blocks 8 4 3
n_repeats 3 2 2
Masker hid_ch 512 128 64
skip_ch 128 128 64
kernel_size | 3 3 3
One-hot fel 14 — 64 14 — 64 14 — 64
Encoding fec2 64 — 499 | 64 — 499 | 64 — 499
ConvID_ch | I — 258 1 — 258 1 — 258
Binary fe_dl 499 — 32 | 499 — 32 | 499 — 32
Detector | fc_d2 32 — 1 32— 1 32 — 1
Model Size: 5.8M 1.3M 600k

TABLE I: Various hyperparameters of CoSSD leading to three model
sizes. The hyperparameters for 1D-Conv vs. STFT based encoder-
decoders translate directly as: n_filters: Determines the length of the
STFT filters before windowing, kernel_size: Length of the filters (i.e
the window), stride: Stride of the convolution (hop size).

A. Data Pre-Processing

The input audio mixture m is a 2-second audio waveform
sampled at 16kHz. During training, m is a pair of disjoint
classes of sound sources with SNR = 0, assuming the tar-
get class to separate is signal and the other is noise. The
conditional ¢ is a one-hot vector or another 2-sec audio
waveform representing the class we are looking to separate
in the mixture. (The networks for these two cases differ only
in the conditional encoder.) The output § is the expected
separation which is a 2-sec audio waveform at 16kHz. For
the detection component, we train on both present d=1 and
absent d=0 scenarios, depending on whether the conditional
class is present in the mixture or not.

B. Model Architecture

The architecture of CoSSD is illustrated in Figure 1. In our
initial attempts, the encoder, decoder, and masker aspects of
CoSSD were inspired by the Conv-TasNet model. However,
we replaced the 1D Conv layers in the encoder and decoder
with STFT filterbanks after noticing a significant improvement
in the detection accuracy using the latter as seen in Table
3. Further, we add our conditional embedding layer for the
one-hot conditional vector using fully connected layers and
a 1D Conv layer. The weights of the waveform-conditional
variant are shared with the input mixture’s encoder. Finally,
the detector component of the architecture is a binary classifier
with sigmoid activation. Table 1 contains details of various
hyperparameters in the different modules of CoSSD. The
modular design of CoSSD allows for a highly interpretable
and flexible architecture. This makes it easy to identify aspects
that influence the separation quality and detection accuracy.
The modularity also helps target specific parts of CoSSD
to manipulate the number of model parameters. Table 1
shows three model sizes of CoSSD: 5.8M, 1.3 M, and 600k
parameters. The smaller architectures may be favored by
resource-constrained environments with real-time applications.
All CoSSD models can be used for real-time application by
staggering the input with tolerable latency-delta and overlap.
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The encoder and decoder consist of Short-time Fourier
Transform (STFT) filterbanks. The encoder performs STFT
over the input and conditional waveform (for wavform as
a conditional only). The decoder performs I-STFT over the
intermediate hidden representation involving the masker and
Conv1D layers. The output of the encoder is concatenated with
the conditional embedding before being passed into a ConvlD
layer. The output of this ConvlD layer is fed to the masker,
which then outputs a single mask to filter the appropriate
sound source in the latent space. This filtering is an element-
wise multiplication of the mask and the output of the Conv2D
layer. The hyperparameters for the encoder and decoder are
interchangeable for the CoSSD with and without learnable
encoder-decoders. For STFT-based encoder-decoders, which
is the main model in this paper, the hyperparameters translate
directly as seen in Table 1.

The major hyperparameters in the masker that influence the
trade-off between model-parameter size and performance are
the number of TCN blocks, their repetition, and the hidden
channels.

The detector module predicts the presence or absence of
the class represented by the conditional vector in the input
mixture. This module is a fully connected layer that sits on
top of the element-wise multiplication Conv1D layer and the
mask, as shown in Figure 1. In the results below, we report
the accuracy of the detector module in addition to the quality
of the separation. This gives an indication of what happens
when the mixture is an arbitrary audio clip in the wild that
might not contain the target source.

IV. EXPERIMENTS

We use the same process for generating the training and
evaluation samples for our experiments. We standardize 2-
sec audio clips from disjoint classes to -12 peak dBFS before
before pairing them to form the mixtures. This standardization
is necessary since some of the datasets used in our experiments
are from crowd-sourced repositories like Freesound [11]. Peak
normalization also allows us to create SNR-specific mixtures
of target source and other sounds to evaluate how our model
performs at different noise levels. Our work does not aim at
denoising tasks, but when focusing on extracting one source
from a mixture of sounds, we treat the other source(s) as noise.
We create training sample mixtures at SNR=0, which means
the sources have equal levels. During the evaluation, we test
CoSSD over three different SNRs {0, 6, 12} as seen in Table
2. Such evaluation helps understand the model’s strengths and
weaknesses over tasks of varying difficulty.

A. Training

For the one-hot conditional model, training samples are a
2-sec mixture, a one-hot vector representing a source class,
the expected 2-sec audio separation, and a binary detection,
0 or 1. For the waveform conditional model, the one-hot
vector is replaced by a waveform that represents the source
class. Given that the model performs two tasks, separation and
detection, we consider the optimization problem as multi-task

learning with a loss function L that has two components, a
synthesis loss Ly, for separation, and binary cross-entropy
loss for detection L4, We initially investigated an MSE
loss for Ly, since we expected the phase information to
carry-over. However, we later found the SI-SDR loss [12]
performs slightly better and used it to train the models in the
experiments below. The final loss function for the multi-task
learning is L = Lgy,m + A Ly We experimented with values of
A between {0.5,1} but did not find any performance difference
and so we set it to 1. We train the models for up to 50 epochs
with a learning rate of 0.0001 and a batch size of 24.

B. Datasets

We use NIGENS (Neural Information processing group
GENeral Sounds) [13] dataset to develop CoSSD for separat-
ing and detecting specific sound sources. This dataset has the
advantage of finer clip-level annotation. The NIGENS dataset
has fourteen classes {alarm, crying baby, crash, barking dog,
running engine, burning fire, footsteps, knocking on the door,
female and male speech, female and male scream, ringing
phone, piano}. This dataset has a small average number of
samples per class; therefore, we decide to ignore the finer
annotation and go ahead with slightly noisy labeling by
assuming the label’s association to the entire clip as a trade-
off. This gives an average of 450 2-sec clips per class. We
create a training and evaluation set by randomly sampling and
pairing disjoint sound source classes. While this allows for a
large number of training samples, we limit our training set to
550,000 pairs for the NIGENS dataset, and 25,500 validation
pairs.

Finally, as a special case, we use CoSSD for separating
foreground and background in a mixture of speech and non-
speech sounds. This case should not be confused with the
traditional multi-source noise or white noise and speech. We
create these mixtures for training using 1000-hours of the
LibriSpeech ASR speech corpus [14] and specific sounds from
the FSD50k [15] dataset.

C. Results

We do not compare the performance of CoSSD to other
methods since we are not aware of any that perform joint
separation and detection in specific-sound sources and speech
tasks. However, focusing just on separation, we observe that
CoSSD exhibits the improved performance expected of su-
pervised methods over one-shot learning [2]. We evaluate
CoSSD on the NIGENS dataset for both the one-hot and
waveform conditioned cases and on the LibriSpeech+FSD50k
datasets for the one-hot case. In Table 2 and Table 3, we show
results of the proposed CoSSD framework and compare it with
two alternative approaches. We use three quantitative metrics
to measure the quality of the separation: SDR (Signal to
Distortion Ratio), SI-SDR (Scale Invariant Signal to Distortion
Ratio), and STOI (Short-Time Objective Intelligibility) [12],
[16]. Higher values correspond to better performance. To make
our investigation comprehensive, we present the results for
three model sizes and for three SNR values {0, 6, 12}. Note
that the results provide comprehensive detection accuracies
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Model Parameters
SNR 5.8M 1.3M 600k
SDR | SI-SDR | STOI | Det Acc SDR | SI-SDR | STOI | Det Acc SDR | SI-SDR | STOI | Det Acc

0 12.31 | 10.81 0.67 0.84p | 0.94a 10.44 | 8.70 0.66 0.85p | 0.94a 7.70 5.94 0.62 0.78p | 0.90a
(A | 6 15.12 | 13.69 0.72 0.87p | 0.93a 13.16 | 11.66 0.71 0.87p | 0.95a 10.62 | 9.15 0.68 0.86p | 0.91a

12 17.32 | 15.94 0.76 0.87p | 0.92a 15.60 | 14.40 0.75 0.90p | 0.94a 13.05 | 11.84 0.72 0.86p | 0.91a

0 12.17 | 10.58 0.66 0.83p | 0.95a 10.36 | 8.99 0.64 0.81p | 0.88a 7.67 5.68 0.62 0.79p | 0.76a
B) |6 15.03 | 13.46 0.71 0.88p | 0.94a 1292 | 11.64 0.70 0.86p | 0.88a 10.45 | 8.76 0.68 0.87p ] 0.78a

12 17.18 | 15.56 0.75 0.90p [ 0.93a 15.09 | 14.05 0.74 0.89p | 0.88a 13.05 | 11.74 0.73 0.875p[ 0.79a

0 20.14 | 19.61 0.94 1.00p | 0.993a | 19.14 | 18.62 0.93 1.00p | 0.93a 17.57 | 17.04 0.92 1.00p | 0.99a
) | 6 23.08 | 22.66 0.96 1.00p | 0.991a | 22.15 | 21.77 0.96 1.00p | 0.991a | 20.70 | 20.24 0.95 1.00p | 0.99a

12 25.66 | 25.31 0.98 1.00p | 0.988a | 24.79 | 24.49 0.97 1.00p | 0.988a | 23.29 | 22.85 0.97 1.00p | 0.99a

0 5.28 3.65 0.45 1.00p | 0.993a | 4.37 2.55 0.43 1.00p | 0.96a 2.31 0.50 0.39 1.00p | 0.99a
D) |6 8.03 6.62 0.54 1.00p [ 0.993a | 7.07 553 0.51 1.00p | 0.95a 5.11 3.48 0.47 1.00p | 0.99a

12 10.54 | 10.39 0.82 1.00p [ 0.993a | 9.35 7.93 0.59 1.00p [ 0.955a | 7.37 5.74 0.54 1.00p | 0.99a

TABLE II: Separation performance (SDR, SI-SDR, and STOI) and detection accuracy of CoSSD for different model sizes and SNR levels.
Higher is better for all metrics. (A) Mixtures from the NIGENS dataset with one-hot conditional. (B) Mixtures from the NIGENS dataset
with waveform conditional. (C) Mixtures from LibriSpeech and FSD50K with speech as the target. (D) Mixtures from LibriSpeech and
FSDS50K with non-speech as the target. (C) and (D) are with one-hot conditional only.

where p denotes the detection accuracy when the source of
interest is present and is accurately predicted as being present,
and a denotes detection accuracy when the source of interest
is absent and is accurately predicted as being absent.

1) NIGENS Dataset: The NIGENS dataset exhibits the
kinds of inter-class similarity and intra-class variation dis-
cussed earlier. For instance, classes like footsteps and door-
knock sound similar, and the classes phone-ringtone and alarm
have significant intra-class variation. Given these challenges,
CoSSD performs well at separating specific sound classes
in both conditional cases. Section (A) in Table 2 shows the
performance of the one-hot conditional and section (B) shows
the performance of the waveform conditional. Both achieve
high separation performance and high detection accuracy. It is
interesting that the performance difference between the two
conditionals is not significant. As expected, the separation
performance improves as the SNR increases, meaning the
target audio source is louder than the other source making
separation easier. Also as expected, the performance worsens
as the model size decreases which is common in deep learning.
The performance decrease from 1.3M to 600k parameters is
greater than from 5.8M to 1.3M due to the limited capacity
of the masker module in the smallest model.

2) Special Case: Speech and Non-Speech Separation:
This experiment highlights the versatility of CoSSD where
we apply it to speech and non-speech separation, with only
a slight modification how the target source is coded in the
one-hot conditional vector. Separating speech and non-speech
is important in cinematography, podcasts, speech-denoising,

and comfort-noise extraction applications. For example, given
a mixture of bird songs and background (human) chatter,
some applications might want to separate the bird songs
while others might want to separate the chatter. CoSSD
can do either by simply changing the conditional. Adapting
to the binary class problem does not require any changes
to the model architecture. Instead, the one-hot conditional
vector [1,1,1,1,1,1,1,0,0,0,0,0,0,0] is used to denote speech and
[0,0,0,0,0,0,0,1,1,1,1,1,1,1] to denote non-speech. We form
a set of over 3.5M 2-sec mixtures combining speech from
Librispeech and specific sounds from FSD50k. Similar to the
NIGENS dataset, we present the results for different SNR
values and different model sizes.

Section (C) of Table 2 shows the results for when speech
is the target source and section (D) shows the results for
when non-speech is the target. We see the model achieves
nearly 100% accuracy at the detection task. This may be
due to the abundance of training data and to the easier task
of discriminating speech from non-speech. We see that the
model is better able to separate speech than non-speech. This
is probably due to the relative homogeneity of the speech
clips from Librispeech compared to the non-speech ones from
FSD50k.

3) Comparison with baseline and other approaches: To
the best of our knowledge, there is no existing work that
can separate multiple sources of interest in a mixture, using
two types of conditionals, one-hot and waveform, and can
be applied successfully to non-speech and speech separation
and detection tasks, in a single end-to-end trained framework.

(A) Cond Sep Only (B) Cond Det Only (C) CoSSD with Learned Enc-Dec (D) CoSSD
SNR M 800k 5.91M 5.8M
SDR | SI-SDR | STOI Det Acc SDR | SI-SDR | STOI Det Acc SDR | SI-SDR | STOI Det Acc
0 11.66 10.36 0.66 0.50p | 0.76a 12.93 11.38 0.66 | 0.74p | 0.92a | 12.31 10.81 0.67 | 0.84p | 0.94a
6 14.63 13.43 0.71 0.47p | 0.76a 15.42 13.96 0.71 | 0.78p | 0.92a | 15.12 13.69 0.72 | 0.87p | 0.93a
12 17.07 15.97 0.75 0.45p | 0.76a 17.34 15.99 0.74 | 0.80p | 0.92a | 17.32 15.94 0.76 | 0.87p | 0.92a

TABLE III: Comparing the proposed CoSSD with other methods and baselines on NIGENS Dataset. Results in (A) and (B) show performance
of Separation and Detection Networks when trained and applied separately to the proposed problem. (C) and (D) illustrate the motivation
behind using STFT based Encoder Decoders instead of trainable 1D Conv Encoder and Decoders. Note that the results in Table 3(D) are

the same as those in Table 2(A) for the 5.8M parameter model.
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Therefore, it is difficult to have a fair comparison with existing
work. However, we compare CoSSD with two other techniques
to solve the proposed problem. First, we consider performing
conditional separation and detection separately. Table 3, (A)
and (B) show the results of this approach, where we trained
these two models separately and applied them in succession.
Performing conditional separation and detection separately
deteriorates the separation quality by a small extent and the
detection accuracy by a very large margin. Second, (C) and
(D) in Table 3 support our motivation behind using STFT
filterbanks in the encoder and decoder of CoSSD instead of the
learned 1D Convolution filters that are used in Conv-TasNet.
We find that the detection performance is significantly better
for CoSSD with STFT filters, and the separation quality is
similar. Note that learned filters can result in extra parameters
through the encoders and decoders that can prove significant
in smaller networks.

V. DISCUSSION

Given that CoSSD performs conditional separation and de-
tection jointly using a common representation, it begs whether
there is always a positive correlation between the separation
performance vs. detection performance. For most of the 35
training epochs, the detection and separation performance
positively correlate. However, we start seeing a slight nega-
tive correlation only when the validation performance starts
plateauing. Hence, choosing the correct checkpoint during
training becomes key in finding a desirable separation vs.
detection performance balance.

When considering other approaches for comparison, we
found that existing frameworks cannot handle the case where
there are potentially multiple sources of interest in the mixture,
but we want to select which one to separate. Therefore, we
compare the proposed model with a CoSSD with learned 1D-
Conv encoders and decoders that can be viewed as a highly
augmented blind source separation framework - Conv-TasNet.
Table 3 (C) shows the results of this setting of CoSSD where
it performs poorly on detection tasks compared to the learned
STFT filterbank based CoSSD.

We compare the performance of different model sizes in the
context of potentially deploying the framework in real-time or
in resource-constrained environments. The main contribution
of the paper is a solution to a new problem. We expect that the
performance of our CoSSD framework would further improve
given more parameters and compute time.

VI. CONCLUSION

We proposed an end-to-end single-channel waveform-based
conditional source separation and detection model, and per-
formed extensive experiments comparing with other potential
approaches using the NIGENS, LibriSpeech, and FSD50k
datasets. CoSSD operates on a finite set of sound source
classes while being robust to mixtures from an open-world.
Future work includes converting the modules fully or partly
[17] to transformer networks.

See baligar.github.io/CoSSD/ for audio samples.
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