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Abstract—Although deep learning-based algorithms have 

achieved great success in single-channel and multi-channel 

speech separation tasks, limited studies have focused on the 

binaural output and the preservation of spatial cues. Existing 

methods indirectly preserve spatial cues by enhancing signal-to-

noise ratios (SNRs), and the accuracy of spatial cue preservation 

remains unsatisfactory. A framework has been proposed before 

to directly restore the spatial cues of the separated speech by 

applying relative transfer function (RTF) estimation and 

correction after speech separation. To further improve this 

framework, a new RTF estimator based on recurrent neural 

network is proposed in this study, which directly estimates the 

RTF from the separated speech and the noisy mixture. The 

upgraded framework was evaluated with spatialized WSJ0-

2mix dataset with diffused noise. Experimental results showed 

that the interaural time difference and interaural level 

difference errors of the separated speech were significantly 

reduced after RTF correction, and its SNR was not sacrificed. 

The new RTF estimator further improved the performance of 

the system, with about 5 times smaller model than the previous 

one. As the proposed framework does not rely on any specific 

type of model structure, it could be incorporated with both 

multi-channel and single-channel speech separation models. 

Keywords—binaural speech separation, spatial cue preserva-

tion, recurrent neural network, 

I. INTRODUCTION 

It is a common situation for humans to hear multiple 
sources of sounds simultaneously in real life, and the human’s 
auditory system has the ability to focus on the desired sources 
and perceive their locations while suppressing undesired 
sources , inferred from the interaural time differences (ITDs) 
and interaural level difference (ILDs) of the sounds reaching 
both ears [1-2]. Studies in binaural hearing have shown that 
preserving spatial cues (e.g., ITD and ILD) in speech 
separation not only offers the localization information of 
target sources, but also improves speech intelligibility [2-3]. 

For conventional speech separation methods, several 
solutions have been proposed to preserve spatial cues. One can 
simply apply an identical real-value mask to both left and right 
channels of the speech signal [e.g., 4-5], so that the interaural 
relation remains unchanged, but the separation quality is 

sacrificed. A more efficient way is to upgrade existing 
beamformers with additional constraints on spatial cues. A 
binaural output version of speech-distortion-weighted multi-
channel Wiener filter (SDW-MWF) was introduced in [6], 
which added a penalty term into the cost function to maintain 
the relative transfer function (RTF) of the target speech. As a 
frequently-used representation of spatial cues, RTF is defined 
as the ratio of the acoustic transfer functions related to the 
source position and two ears [7]. It is suitable for modeling 
directional sounds [8], and its phase and magnitude 
correspond to the ITD and ILD of the sound respectively [6]. 
In [9], the minimum variance distortionless response (MVDR) 
was extended to binaural output by adding a linear constraint 
of RTF into MVDR’s cost function. Most of these methods 
added penalty terms or constraints into the beamformer’s cost 
function to minimize the distortion of spatial cues. 

In recent years, deep learning-based approaches have 
dramatically advanced the performance of speech separation 
systems. A deep neural network (DNN) can be trained to 
estimate the time-frequency (T-F) mask of the target speech 
[10], or directly model the mapping function from the noisy 
mixture to the target speech [11]. Most of the early separation 
systems work in the short-time Fourier transform (STFT) 
domain, while more and more current systems replace the 
fixed STFT with a learned encoder, e.g., the Conv-TasNet [12]. 
Some studies extended the application of DNN from single-
channel scenarios to multi-channel scenarios by introducing 
inter-channel features [13] or combining DNN with beamfor-
mers [14]. However, the preservation of spatial cues for 
binaural output has been rarely studied. A multiple-input-
multiple-output (MIMO) extension of Conv-TasNet was 
proposed in [15] where all channels were encoded by different 
encoders and subsequently concatenated as spatial-sensitive 
features. Compared to the single-channel TasNet, the MIMO-
TasNet achieved significantly better SNR performance and 
reduced the ITD and ILD errors. More recently, a self-
attentive gated recurrent neural network, named SAGRNN 
[16], exploited the self-attention mechanism and dense 
connectivity to further improve the speech separation 
performance, and it was extended to a MIMO system as in 
MIMO-TasNet. Unlike the beamforming-based methods, the 
preservation of spatial cues was not included in their training 
objective, since both of them used signal-to-noise ratio (SNR) 
as their training objective. Improving SNR will certainly 
reduce the difference of phase and level between the separated 
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speech and the target speech, which is beneficial to spatial cue 
preservation, but improving SNR and spatial cue preservation 
are two fundamentally different tasks. It will be more efficient 
to optimize the system directly on spatial cues rather than only 
improving SNR [9]. 

In our previous work, a framework was proposed to 
preserve spatial cues for deep learning-based speech 
separation models [17]. It involves two main steps to directly 
optimize spatial cue preservation, i.e., 1) to estimate the RTF 
of the target speech, and 2) to correct the distorted RTF of the 
separated speech based on the estimated RTF. The estimation 
of RTF is critical for preserving accurate spatial cues, and 
conventionally it is obtained by solving the eigenvector 
decomposition of the covariance matrix [18]. It has been 
proved that replacing eigenvector decomposition with the 
recurrent neural network (RNN) can achieve comparable RTF 
estimation results [e.g., 19]. Therefore in this study, an RNN-
based RTF estimator is proposed, which can further utilize the 
temporal information and frequency context. The new RTF 
estimator can achieve higher accuracy in RTF estimation, with 
5.4 times fewer parameters compared to the previous model. 
The whole system is evaluated in a complex acoustic scenario 
including two competing speakers and a diffused background 
noise. The rest of this paper is as follows. Section II describes 
the system in detail. Section III explains the experimental 
setup. The experimental results and discussion are presented 
in Section IV, and Section V concludes this paper. 

II. SYSTEM DESCRIPTION 

A. Overview 

Given a binaural noisy mixture 𝐲[𝑛] ∈ ℝ2 which consists 
of 𝐼  speech sources 𝐱𝑖[𝑛] ∈ ℝ2 ( 𝑖  denotes the index of 
speakers) and background noise 𝐧[𝑛] ∈ ℝ2, the target speech 
is estimated by a speech separation neural network, yielding 
the separated speech �̂�𝑖[𝑛] ∈ ℝ2 . The STFT coefficients of 

𝐱𝑖[𝑛]  and �̂�𝑖[𝑛]  are denoted as 𝐗𝑖(𝑡, 𝑓)  and �̂�𝑖(𝑡, 𝑓) , 
respectively. The variable  𝑓 ∈ {1, … , 𝐹} is the index of each 
frequency bin out of a total 𝐹  bins, and 𝑡 ∈ {1, … , 𝑇} is the 
index of each time frame out of a total 𝐹 frames. According to 

the definition in [7], the RTF of the target speech (𝑟𝑖
in) and the 

separated speech (𝑟𝑖
out) are respectively defined as: 

𝑟𝑖
in(𝑡, 𝑓) =

𝑋L,𝑖(𝑡, 𝑓)

𝑋R,𝑖(𝑡, 𝑓)
,

𝑟𝑖
out(𝑡, 𝑓) =

�̂�L,𝑖(𝑡, 𝑓)

�̂�R,𝑖(𝑡, 𝑓)
, (1)

 

where 𝑋L,𝑖(𝑡, 𝑓)  and 𝑋R,𝑖(𝑡, 𝑓)  represent the left and right 

channels of 𝐗𝑖(𝑡, 𝑓) , respectively. �̂�L,𝑖(𝑡, 𝑓)  and �̂�R,𝑖(𝑡, 𝑓) 

are defined similarly. When a sound source locates at a fixed 

position, its RTF will be time-invariant. In this study, the 
preservation of spatial cues is achieved by reducing the RTF 
error between the clean speech and the separated speech. The 
procedure consists of 3 steps: First, the preliminarily separated 
speech is obtained by performing a common speech separation 
task. Second, an estimation of RTF for source 𝑖, denoted as 
�̂�𝑖(𝑓) , is extracted from the separated speech by an RTF 
estimator. Finally, the incorrect RTF of the separated speech 
is modified by the estimated RTF �̂�𝑖(𝑓), yielding the corrected 

speech �̃�𝑖(𝑡, 𝑓). Figure 1 illustrates the whole procedure of 
the framework.  

B. RTF estimation 

In order to alleviate the impact of speech separation error 
on RTF estimation, a gated recurrent unit (GRU) [20] based 
estimator is designed to extract the accurate RTF of the target 
speech. Figure 2 shows the pipeline of the proposed RTF 
estimator. The inputs of the estimator are the separated speech 
signals and the noisy mixture in STFT domain, respectively 

denoted as �̂�𝑖(𝑡, 𝑓) ∈ ℂ2  and 𝐘(𝑡, 𝑓) ∈ ℂ2 . Letting (⋅)H 
denote the conjugate transpose, their covariance matrixes are: 

�̂�𝐗𝐗,𝑖(𝑡, 𝑓) = �̂�𝑖(𝑡, 𝑓)�̂�𝑖(𝑡, 𝑓)H , 

𝚽𝐘𝐘(𝑡, 𝑓) = 𝐘(𝑡, 𝑓)𝐘(𝑡, 𝑓)H. (2) 

These covariance matrixes are flattened and concatenated 
into a vector 𝐊𝑖(𝑡, 𝑓) ∈ ℂ8. To provide context information of 
nearby frequency bins above and below the central frequency, 
the spatial features are further extracted by a 2-dimensional 
convolutional layer, with a kernel size of 𝐶 in the frequency 
dimension, and 1 in the time dimension. The real and 
imaginary parts of the complex-valued 𝐊𝑖(𝑡, 𝑓) are concate-
nated together as input to a global layer normalization (gLN) 
and the 2-D convolutional layer. The dimension of the output 
channel of the 2-D convolutional layer is set to 𝑁, yielding the 

spatial feature �̅�𝑖(𝑡, 𝑓) ∈ ℝ𝑁 . The feature vector �̅�𝑖(𝑡, 𝑓) 
centered at each frequency bin is processed by the same GRU 
network in parallel, followed by the tanh activation function. 
The last frame of the GRU network outputs is projected to two 
complex values, which are 𝑉L,𝑖(𝑓)  for the left channel and 

𝑉R,𝑖(𝑓) for the right channel. The final RTF estimation �̂�𝑖(𝑓) 

is obtained as: 

 

Fig. 1. The flowchart of the proposed spatial cue preservation framework. 

Speech 

Separation

RTF 

Estimation 

�̂�𝑖

    

          

STFT iSTFT

    

 

Fig. 2. The architecture of the proposed RTF estimation network. The outer product represents the operation expressed in (2), and ⊘ denotes the element-
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�̂�𝑖(𝑓) =
𝑉L,𝑖(𝑓)

𝑉R,𝑖(𝑓)
. (3) 

The estimation result is evaluated by the difference 
between the RTF of the target speech and the estimated RTF. 
The final score is calculated by averaging the RTF error of all 
frequency bins, and weighted by the energy of the target 
speech, as: 

ΔRTF𝑖(𝑓) = 10 log10 [

∑ 𝑃𝐗,𝑖(𝑓)
|𝑟𝑖(𝑓) − �̂�𝑖(𝑓)|

|𝑟𝑖(𝑓)|𝑓

∑  𝑃𝐗,𝑖(𝑓)𝑓

],  

𝑃𝐗,𝑖(𝑓) =
1

𝑇
∑ (‖𝑋L,𝑖(𝑡, 𝑓)‖

2

2
+ ‖𝑋R,𝑖(𝑡, 𝑓)‖

2

2
)

𝑡
, (4)  

where ΔRTF𝑖(𝑓) is the RTF error of source 𝑖, 𝑃𝐗,𝑖(𝑓) is the 

energy of 𝐗𝑖(𝑡, 𝑓). The reason for using energy weighting is 
to reduce the contribution of RTF errors at unimportant 
frequency bins, since the frequency components of low energy 
have little effect on the spatial characteristic of the whole 
speech utterance. 

C. RTF correction 

After obtaining the estimation of RTF, the distorted RTF 
of the separated speech has to be changed into the estimated 
one at each T-F unit, meanwhile the separation quality cannot 
be sacrificed. It is realized by solving the following 
optimization problem: 

𝐗𝑖(𝑡, 𝑓) = arg min
�̃�𝑖(𝑡,𝑓)

 ‖�̃�𝑖(𝑡, 𝑓) − �̂�𝑖(𝑡, 𝑓)‖
2

2
, 

       s. t.
�̃�L,𝑖(𝑡, 𝑓)

�̃�R,𝑖(𝑡, 𝑓)
= �̂�𝑖(𝑓), ∀𝑡 ∈ {1, … , 𝑇}. (5) 

Even though �̂�𝑖(𝑡, 𝑓) will not be identical to the target  

speech 𝐗𝑖(𝑡, 𝑓) , minimizing ‖𝐗𝑖(𝑡, 𝑓) − �̂�𝑖(𝑡, 𝑓)‖
2

2
 can 

largely ensure that the correction will not introduce too much 
extra noise. 

III. EXPERIMENT 

A. Dataset 

A spatialized and noisy version of the WSJ0-2mix dataset 
[21] was generated for the training and evaluation of the 
proposed system. The mono utterances in WSJ0-2mix were 
convolved by randomly selected head-related impulse 
response (HRIR) from the ITA database [22], and the location 
of speech sources was randomly selected from 72 azimuths 
(with 5° resolution in all directions) and 32 elevations (with 
5° resolution from −66° to 90°). Data from 36 subjects were 
used for training and evaluation, and data from 9 unseen 
subjects were used for testing. The spatialized speech signals 
were mixed with randomly selected noises from the 
DEMAND dataset [23], which contained diffused noises 
recorded in 18 different scenarios. Each of the mono noise 
from the DEMAND dataset was rendered by the ITA HRIRs 
and averaged in all directions, to simulate an isotropic noise 
field as in [9] and [24]. The noises of 9 scenarios were chosen 
for training and evaluation, and those of the rest scenarios 
were used for testing. The noise level relative to the speech 
mixture was randomly chosen between –10 dB and 10 dB, 
with the average SNR of the noisy mixtures being –5.57 dB. 
All audios were downsampled to 8 kHz. 

B. Network Configurations 

The non-causal MIMO-TasNet was implemented as the 
speech separation module, with the same configuration 
reported in [15]. For RTF estimation, the kernel size of the 2-
D convolutional layer was set to (1, 11),  and the number of 
output channels (i.e. 𝑁) was set to 32. The GRU network 
included 4 layers of GRU with 64 hidden channels. The 
analysis window for STFT was a square-root-Hann window, 
with a frame length of 512 samples, an overlap of 128 samples, 
and an FFT size of 512 samples. The speech separation 
module was trained on SNR, and the RTF estimator was 
trained on ΔRTF. The Adam optimizer [26] was adopted with 
the initial learning rate set to 1𝑒−3. These two modules were 
trained sequentially to avoid the potential problem of 
balancing multiple tasks in one loss function. 

C. Evaluation 

Both speech separation quality and the accuracy of pre-
served spatial cues were considered in the evaluation. The 
speech separation quality was evaluated by SNR improvement 
(ΔSNR), and the preservation of spatial cues was evaluated by 
the ITD error (ΔITD) and the ILD error (ΔILD) between the 
estimated speech signals and their clean references. The ITD 
and ILD were calculated by the same method in [16], which 
originated from a sound localization algorithm [27]. Specifi-
cally, the binaural speech signal was filtered by a gammatone 
filter-bank with 32 channels, and then segmented into T-F 
units of 160 samples (i.e. 20 ms).  The time delay (measured 
by cross-correlation) and the level differences were calculated 
as the T-F unit level ITDs and ILDs, respectively. The ITD of 
the entire utterance was summarized by plotting the histogram 
of the ITD for each T-F unit, and taking the center value of the 
highest bin. Due to the dominant role of ITD in localization at 
low frequencies, only the T-F units under 1.5 kHz were taken 
into count. The ILD was summarized through a similar 
procedure, but separately counted at 3 different filter-banks 
with center frequencies at roughly 2.07, 3.08, and 3.75 kHz, 
respectively, because of the frequency-dependence of ILD. 

IV. RESULTS AND DISCUSSION 

Table 1 shows the evaluation results of the proposed 
system in the noisy condition, in which MIMO-TasNet is 
chosen as the speech separation module. The performance of 
MIMO-TasNet itself and binaural MWF are also listed as 
baselines. The covariance matrixes required by binaural MWF 
were generated from the separation result of MIMO-TasNet. 
Three different types of RTF estimators were compared in the 
same framework, which were: the GRU network proposed in 
this paper (named as “RNN-EVD”), the previously proposed 
RTF estimator in [17] (named as “RNN-mask”), and the 
conventional method based on eigenvector decomposition 
(named as “EVD”). Combined with the best RTF estimator, 
the proposed framework significantly outperformed MIMO-
TasNet in spatial cue preservation. ΔITD was reduced from 
28.95 μs to 17.60 μs, and  ΔILDs in three frequency bands 
were reduced from 0.96, 0.79, and 1.34 dB to 0.36, 0.29, and 
0.53 dB, respectively. Besides, although the RTF corrector 
was not designed to improve the separation quality, ΔSNR 
still slightly increased by about 0.7 dB after correction, which 
is consistent with the results in the noise-free condition [17]. 
These results indicate that the RTF corrector can efficiently 
restore the spatial cue of the separated speech. The RNN-EVD 
estimator produced the most accurate RTF, and ΔRTF was 
3.62 dB lower than that of the eigenvector decomposition 
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method, which shows the superior accuracy of the proposed 
RTF estimator. The evaluation results with different noise 
levels are separately plotted in Fig. 3, where the noise levels 
relative to speech mixture were set to –12, –6, 0, and 6 dB. It 
can be found that the proposed system provided the best result 
constantly.  

In addition to the improvement in performance, the RNN-
EVD estimator has a much smaller model size with 135K 
parameters compared to the RNN-mask with 735K parameters. 
This is because the spatial features are processed at multiple 
sub-bands rather than full band in RNN-EVD estimator, 
which makes the RNN model learn common features across 
multiple sub-bands, and helps to save the model size. 

To clarify the importance of each component in the RTF 
estimator, several variants of the estimator were created and 
tested, which are also shown in Table 1. The column  “Mixture”  
indicates whether the input of the RTF estimator includes the 
noisy mixture, and the column “Context” indicates whether 
the input includes the frequency context. For variants without 
frequency context, the number of context frequency bins (i.e. 
𝐶) is set to 0. It is shown that introducing frequency context 
and extra features from the noisy mixture reduced the ΔRTF 
by 3 dB, from –11.04 dB to –14.04 dB. The improvement in 
ΔRTF reveals that the proposed RTF estimator can utilize the 
complementary features in separated speech and noisy 
mixture, and the relation of RTF among nearby frequency bins 
to improve the accuracy of the estimated RTF.  

Since the RTF preservation modules in our proposed 
framework do not rely on any specific speech separation 
model, they could be flexibly combined with any deep 
learning-based speech separation model. To illustrate this 
property, the framework was tested with a single-channel 
speech separation model called DPTNet [28]. The DPTNet is 
an end-to-end speech separation model which incorporates the 
transformer into the dual-path RNN network [29]. The 
configuration of DPTNet was not modified, except that the 
frame length of the encoder was set to 4 samples, due to the 
limitation of hardware resources. The DPTNet was applied to 
each channel of the binaural input independently, so that the 
interaural features were not available. The RTF estimator was 
retrained based on the separation result of DPTNet. As a result, 
the spatial cues of the separated speech contained larger 
distortion than the multi-channel models. The lower part of 
Table 1 shows the evaluation results of DPTNet before and 

after RTF correction in the noisy condition. Even though the 
spatial cues were highly distorted, the RNN-EVD estimator 
still provided a relatively accurate estimation of RTF, with a 
ΔRTF of –14.03 dB. Consequently, the gap between MIMO-
TasNet and DPTNet on spatial accuracy was narrowed after 
the RTF correction. This indicates that the proposed 
framework is suitable for both multi-channel and single-
channel speech separation models, and the proposed RTF 
estimator is robust to spatial cue distortion caused by the 
speech separation models.  

V. CONCLUSIONS 

In this paper, a new RNN-based RTF estimator is proposed 
to upgrade the framework of preserving spatial cues for speech 
separation models. The framework with the new RTF 
estimator was evaluated in a 2-speaker scenario with diffused 
noise. The experimental results showed that the framework 
can further reduce the ITD and ILD errors of the separated 
speech in the noisy condition, and slightly increase the SNR 
at the same time. The proposed framework does not rely on 
any specific type of speech separation model, hence it is 
suitable for both multi-channel and single-channel speech 
separation models. Future work could include the real-time 
solution to spatial cue preservation, and its application to 
assistive hearing devices (e.g., hearing aids).  

 

Fig. 3. The evaluation results of different methods with constant relative 

noise levels. (a) SNR improvement. (b) ITD error. (c)-(e) ILD errors at 2.07, 
3.08, and 3.75 kHz, respectively. 

 

TABLE I.  SEPARATION QUALITY AND ACCURACY OF PRESERVED SPATIAL CUES OF DIFFERENT METHODS ON SPATIALIZED WSJ0-2MIX WITH DIFFUSED NOISE.   

Method 

ΔRTF (dB) ΔSNR (dB) ΔITD (μs) 
ΔILD (dB) 

Separation 

module 
RTF estimator 

RTF estimator input 

Mixture Context 2.07 kHz 3.08 kHz 3.75 kHz 

BMWF [6] EVD — — — 15.61  25.66  0.76  0.68  1.07  

MIMO-

TasNet [15] 

None — — — 20.96  28.95  0.96  0.79  1.34  

EVD — — –10.42  21.44  23.63  0.76  0.68  1.05  

RNN-mask [17] — — –13.06  21.60  20.27  0.51  0.38  0.64  

RNN-EVD 

✓ ✓ –14.04  21.67  17.60  0.36  0.29  0.53  

✓ × –13.59  21.64  18.91  0.41  0.31  0.55  

× ✓ –11.19  21.51  22.13  0.63  0.51  0.80  

× × –11.04  21.49  23.29  0.64  0.51  0.80  

DPTNet [29] 

None — — — 15.62  76.95  1.85  1.85  2.34  

EVD — — –7.47  16.52  27.52  3.07  2.94  3.21  

RNN-EVD ✓ ✓ –14.03  16.86  19.12  0.45  0.39  0.68  
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