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Abstract—In some DNNs for audio source separation, the
relevant model parameters are independent of the sampling
frequency of the audio used for training. Considering the ap-
plication of dialogue separation, this is shown for two DNN
architectures: a U-Net and a fully-convolutional model. The
models are trained with audio sampled at 8 kHz. The learned
parameters are transferred to models for processing audio at
48 kHz. The separated audio sources are compared with the
ones produced by the same model architectures trained with
48 kHz versions of the same training data. A listening test
and computational measures show that there is no significant
perceptual difference between the models trained with 8 kHz
or with 48 kHz. This transferability of the learned parameters
allows for a faster and computationally less costly training. It
also enables using training datasets available at a lower sampling
frequency than the one needed by the application at hand, or
using data collections with multiple sampling frequencies.

Index Terms—deep learning, dialogue separation, sampling
frequency

I. INTRODUCTION

When developing and training a deep neural network (DNN)
for audio signal processing, the input signal sampling fre-
quency is normally fixed and defined by the target applica-
tion, e.g., 8 or 16 kHz for speech, 44.1 kHz for music, and
48 kHz for broadcast applications. Alternatively, the sampling
frequency of the model is dictated by the available training
data. If we want to process signals at a sampling frequency
different from the one in training, signal re-sampling may be
needed, a new model for the new sampling frequency needs
to be trained, or a different paradigm needs to be applied,
e.g., [1].

Focusing on the dialogue separation application [2], [3],
this paper presents the observation of sampling frequency
independence of relevant model parameters in certain audio
source separation DNN architectures. In these architectures
the trainable parameters are effectively independent of the
actual signal sampling frequency. This opens the possibilities
for training a single model with multiple datasets of different
sampling frequencies, or training and deploying a model
in different sampling frequencies. Additionally, training at
a lower sampling frequency is computationally cheaper and
faster, possibly reducing the carbon footprint.
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To the best of our knowledge, the only directly related work
is by Saito et al. [4]. They construct a sampling-frequency-
independent (SFI) convolutional analysis and synthesis filter
bank (i.e., encoder and decoder) for ConvTasNet [5] by
sampling analog gammatone filter impulse responses at the
provided sampling frequency. The filter center frequencies are
independent of the sampling frequency, and their number is
fixed, meaning that the encoded representation covers always
the same frequency range. In this contribution, we show that it
is possible to achieve sampling frequency independence also
with the more commonly-used short-time Fourier transform
(STFT), with the advantage that the analytic definition of
the transform allows covering the full frequency range. We
propose that the key is keeping the spectral and temporal gran-
ularity constant and independent of the sampling frequency.

In the remainder of this paper, we look into two DNN
architectures built into a common framework (Sec. II), we
describe an experimental setup for the sampling frequency
change (Sec. III), and show that the parameters of these models
can be transferred from a model trained with 8 kHz data to a
model for processing 48 kHz data with no significant quality
degradation compared to a native 48 kHz model (Sec. IV).

II. METHOD

A. Sampling frequency independence

The main assumption in this paper is that the time-frequency
resolution of the representation in the DNN is constant even
when the signal sampling frequency is different. Let us con-
sider the STFT representation as an example. A constant
time-frequency resolution across sampling frequencies can be
fulfilled by setting a constant frame length and spacing in
units of seconds. From this and the sampling frequency, the
length of the transform can be determined. As a result, the
STFT representations obtained from two signals with different
sampling frequencies (but same duration in seconds) will have
the same number of frames, e.g., t0, . . . , t4, as illustrated
in Fig. 1. The number of frequency axis elements (or bins)
will differ, e.g., f0, f1 for the lower sampling frequency, and
f0, . . . , f5 for a sampling frequency 3 times higher. Still, the
spacing of the bins is the same, i.e., f0 and f1 will refer to
the same frequency sub-bands at both sampling frequencies.

Operations acting only on a local subset of the frequency
axis elements (e.g., f0 and f1) will now have similar infor-
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Fig. 1. Time/frequency tiles after the encoding layer with an STFT adapted
to two different sampling frequencies Flo and Fhi = 3Flo. The shaded tiles
represent the resolution obtained for the lower sampling frequency.

mation available on the overlapping (low) frequency region of
all sampling frequencies. Examples of such operations are 1D
and 2D convolutions, or 1D recurrent layers operating along
the frequency axis or per sub-band, e.g., [6]. Since operations
of these layers are independent of the absolute bin frequency,
it appears that training with band-limited data will result into
parameters that will work also for the frequency region not
present in the training.

This is not a generic solution, but dependent on the exact
network architecture and layers used, e.g., a model containing
a fully-connected layer cannot be trivially converted.

One should note that even though the sampling frequencies
used for the main demonstration in this paper have an integer
multiple relationship, this is not a strict requirement in the
real world. In fact, the resulting frame lengths and transform
lengths used in the experiments are not exact integer multiples
(see Sec. II-B). Even though the time/frequency-resolutions
are not identical and the assumption outlined above is re-
laxed, no significant perceptual quality degradation is observed
(Sec. IV). As a related effect, the resulting time-to-frequency
transform lengths may be non-power-of-2.

B. Common DNN framework

The experiments make use of a U-Net core [7]–[10] and
a fully-convolutional core, both inside the encoder-decoder
architecture shown in Fig. 2 with the common processing steps
consisting of:

1) Encoder: The time-domain input signal x(t) is trans-
formed into an encoded representation. The input is assumed
to be a mixtures of a foreground target and background
non-target components x(t) = xFG(t) + xBG(t). We use
STFT implemented as a strided 1D convolution. The number
of convolutional filters depends on the sampling frequency
for which the model is instantiated. Each filter corresponds
to the combination of the windowing function (here, sine
window) and the time-reversed impulse response of the STFT
kernel. The frame length is ca. 42.7 ms, corresponding to 2048
samples at 48 kHz sampling frequency (342 samples at 8 kHz
and 1882 samples at 44.1 kHz), and the stride is 50%.

2) Compression: The magnitudes of the spectral elements
c = ℜ(c) + iℑ(c) are compressed with cz = qℜ(c) + qiℑ(c),
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Fig. 2. The common DNN framework used in the experiments. The block
DNN core is either a U-Net or a convolutional block, depending on the tested
system.

where q is the effective magnitude scaling computed as
q = log (α+ |c|)/|c|, with α = 1.

3) The compressed values are split into the real and imagi-
nary parts and stacked from all input audio channels into the
channels dimension of the network tensors.

4) Spectral whitening: For each frequency bin, subtract the
mean and divide by standard deviation over the training data.

5) DNN core: Separation filters (masks) are produced for
cross-channel filtering.

6) Scaling: Global scalar offset and scaling are applied to
the filters to allow exceeding the range of the last activation.

7) The separation filters are applied on the original encoded
representation.

8) Decoder: The encoded result is transformed back to time
domain producing an estimate of the target signal x̂FG(t). We
use a convolutional STFT synthesis filter bank.

9) An estimate of the non-target component is obtained by a
subtraction from the input mixture: x̂BG(t) = x(t)− x̂FG(t).

Applying the proposed sampling frequency conversion for
the models implemented in this framework is straightforward.
First, the frame length is adjusted according to sampling
frequency and the filters of the STFT-based encoder and
decoder are designed for the new length. After the encoder,
the data is of the same form with only a different number of
elements in the dimension corresponding to frequency. The
spectral whitening layer needs to be assigned with new per-
frequency parameters, which can be computed, e.g., with one
pass over target mixtures. As the remaining operations fulfil
the assumption of being agnostic to the absolute frequency
and apply their function to the whole input regardless of its
size, the conversion is now ready.

C. U-Net

The U-Net core follows closely the structure of Spleeter [10]
with the following changes. The up-sampling path uses factor
2 nearest-neighbor up-sampling, followed by a 5× 5 convolu-
tion, instead of the transposed strided convolutions used in the
original model. The number of filters in the last up-sampling
convolution and the output 5× 5 convolution are equal to the
number of separation filters. The output activation is tanh.

D. Convolutional network (CNN)

The second DNN core used in the experiments is a fully-
convolutional network developed for dialogue separation [2].
Variants of this model have been tested in earlier investiga-
tions [3], [11], [12]. The model consists of a stack of 24
convolutional blocks, each having a frequency-domain padding
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in reflection mode, a 3×5 (time × frequency) 2D convolution
with 32 filters, a ReLU activation, and a layer normalization
for the channels. The last block uses tanh activation and the
number of filters is equal to the number of separation filters.

III. MODEL VARIANTS

Our experiments make use of the two core architectures in
these variants:

• 48 kHz: This is the reference condition, in which the
model is both trained with and applied on 48 kHz data.

• 8 kHz: The model is both trained with and applied on
8 kHz data. The test items are down-sampled for processing,
and the model outputs are up-sampled back to 48 kHz.

• Ftrain→Ftest kHz: The model is trained with data having
sampling frequency Ftrain = 8 kHz and the parameters are
copied to a model for data with sampling frequency of
Ftest ∈ {44.1, 48} kHz. The spectral whitening layer parame-
ters are obtained from the training mixtures at Ftest kHz. Note
that Ftrain and Ftest do not necessarily have an integer ratio.

A. Data

The data used in our experiments consists of almost 21
hours of stereo audio from real broadcast content. All items
have foreground signals (speech or dialogue) and matching
background signals (music, effects, non-speech). The native
sampling frequency of the data is 48 kHz, a full copy of the
data is down-sampled to 8 kHz. The training data (14 h 18 min)
and the test set (1 h) are independent and the same as in [11].
The validation data consists of 5 h 36 min of audio from the
same item pool as the training data. The training examples are
used in full length. Online data augmentation is used for each
example with a random offset in the beginning (max. 10 ms)
to avoid identical time ranges, 33% chance of being down-
mixed into mono (in stereo experiments), a random gain in
the range [−6,+6] dB, and a signal-to-background mixing
ratios modification by [−6,+6] dB. The order of the training
examples and the augmentation are randomized in each epoch.

The main experiments use models for separating stereo
components from stereo input signals. For verifying that the
models do not rely only on spatial information, the com-
putational evaluation is performed additionally for models
separating mono components from mono inputs. For the mono
tests, the entire data set is converted to mono and the down-
mixing augmentation is disabled.

B. Training

We use time-domain mean absolute error (MAE) as loss and
ADADELTA [13] as the optimizer. The training is run until the
validation loss does not improve in 10 epochs, and the model
with the lowest validation loss is used in the evaluation.

The stereo training of the U-Net converged on epochs 96
and 85 for the 8 kHz and 48 kHz models, and of the CNN
on epochs 28 and 30 for the 8 kHz and 48 kHz models
(for mono, epochs 61 and 136 for the U-Net and 41 and
43 for the CNN). The number of trainable parameters in
the stereo models with the U-Net core is 9,827,330, and

Fig. 3. Examples magnitude spectrograms of a 1 s excerpt. The frequency-
dependent MAE is between the reference magnitude spectrum Ref and the
speech estimates that the CNN variants separated from the input mixture (input
SI-SIR = 8.5 dB).

with the CNN core 359,438 and does not depend on the
sampling frequency. These numbers exclude the parameters of
the spectral whitening operation. On our system, the average
per-epoch training duration for the U-Net core is 42 s for the
8 kHz version and 6 min 45 s for the 48 kHz version, meaning
9.6 times faster training on the lower sampling frequency data.
For the CNN, the average per-epoch training durations are
6 min and 42 min, meaning 7 times faster training with the
lower sampling frequency.

IV. EVALUATION

Fig. 3 visualizes example magnitude spectra of the outputs
of the three CNN model variants. While obviously CNN 8 kHz
does not have any content above 4 kHz, both CNN 8→48 kHz
and CNN 48 kHz are able to separate the target with little
errors in high band. In particular, CNN 8→48 kHz exhibits no
major difference with CNN 48 kHz in high band separation
performance, even if that frequency range was not seen during
training. A more formal evaluation follows.

A. Computational evaluation

The computational evaluation uses the scale-invariant
signal-to-distortion (SI-SDR), signal-to-artifacts (SI-SAR),
and signal-to-interference (SI-SIR) [14], [15] evaluated on the
separated foreground signal with the 44.1 kHz or 48 kHz refer-
ence signal. Additionally, a measure intended for basic audio
quality evaluation by predicting the result of a MUSHRA [16]
listening test, the 2f-model [17], [18] is computed. The mea-
sures are computed for both the input mixture signal and the
model output in order to compute the change in the measure
resulting from the models’ processing. The results of the stereo
experiments are given in Table I and of the mono experiments
in Table II.

B. Listening test

A multi-stimulus listening test [16] is conducted to evaluate
the perceptual quality. The test items are the same as in [11],
taken from the stereo test item pool, and they consist of speech
on top of various backgrounds. Each item is 8 s long. The
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TABLE I
COMPUTATIONAL EVALUATION OF STEREO MODELS. THE ROWS ∆SI-SDR, ∆SI-SIR, AND ∆2F SHOW THE MEAN PER-ITEM IMPROVEMENT AND THE
STANDARD DEVIATION FOR THE GIVEN MEASURE WITH RESPECT TO THE INPUT MIXTURE. THE ROW SI-SAR SHOWS THE MEAN PER-ITEM ABSOLUTE
VALUE AND THE STANDARD DEVIATION OF THE PROCESSED CONDITIONS. THE INPUT MIXTURES WERE ARTIFACT-FREE. THE VALUES FOR THE INPUT

MIXTURE WERE SI-SDR 6.5±7.0 DB, SI-SIR 6.5±7.0 DB, AND 2F-MODEL 20.6±11.9.

CNN
8 kHz

CNN
8→48 kHz

CNN
8→44.1 kHz

CNN
48 kHz

U-Net
8 kHz

U-Net
8→48 kHz

U-Net
8→44.1 kHz

U-Net
48 kHz

∆SI-SDR (dB) 3.0±5.3 8.3±4.1 8.3±4.0 8.2±4.3 2.4±5.0 6.9±4.1 5.9±4.3 7.2±4.5
∆SI-SIR (dB) 18.5±8.4 18.9±8.8 18.7±8.8 17.7±8.4 15.8±8.0 16.5±8.4 17.2±9.5 16.7±7.4
SI-SAR (dB) 9.9±4.2 15.6±5.9 15.6±5.9 15.8±6.1 9.4±4.5 14.5±6.5 13.2±6.0 14.6±6.3
∆2f 3.8±8.3 15.7±6.7 15.8±6.7 16.6±7.0 3.8±8.2 14.1±7.3 11.2±7.5 13.1±7.6

TABLE II
COMPUTATIONAL EVALUATION OF MONO MODELS. SEE THE CAPTION OF TABLE I FOR THE DESCRIPTION OF THE ROWS. THE VALUES FOR THE INPUT

MIXTURE WERE SI-SDR 7.7±7.0 DB, SI-SIR 7.7±7.0 DB, AND 2F-MODEL 20.8±12.0.

CNN
8 kHz

CNN
8→48 kHz

CNN
48 kHz

U-Net
8 kHz

U-Net
8→48 kHz

U-Net
48 kHz

∆SI-SDR (dB) 1.6±5.1 6.6±3.7 6.8±3.8 1.0±4.8 5.3±3.8 5.7±4.2
∆SI-SIR (dB) 14.1±6.8 14.7±7.2 15.4±7.2 12.7±7.5 13.6±7.8 12.7±7.4
SI-SAR (dB) 9.8±4.2 15.5±6.1 15.5±6.0 9.4±4.5 14.5±6.5 15.2±6.6
∆2f -1.5±8.2 9.0±5.8 10.4±5.7 -1.4±8.6 8.4±6.7 10.1±6.0

separated components are mixed to simulate a dialogue en-
hancement application by attenuating the background estimate
20 dB. The hidden reference is obtained from the original
component signals used to create the input mixtures, and the
low anchor is a 4 kHz low-pass filtered version of this. Since
this reflects the maximum quality a model operating on 8 kHz
signals could reach, the outputs from the 8 kHz variants are
omitted from the test. The test conditions are 8→48 kHz and
48 kHz for both U-Net and CNN cores.

The task given to the listeners was: ”... to rate the overall
quality of the conditions in comparison with the given ref-
erence.” The test was taken by 12 expert listeners in their
offices using their own high-quality headphones, and no result
was post-screened. Figure 4 shows the test results.

V. DISCUSSION

The performance differences between the variants 48 kHz
and 8→48 kHz are minimal in all computational measures
as well as in the listening test results. Considering the vari-
ance across items and the confidence intervals, no significant
difference can be observed between the two variants. This
observation is valid for both U-Net and CNN cores, and
for both mono and stereo models. On the other hand, it is
clear especially in the 2f-model output that the 8 kHz variants
perform worse than the models for 48 kHz audio.

The results for the 44.1 kHz sampling frequency target
data in Table I show that for the CNN core the conversion
8→44.1 kHz works equally well as 8→48 kHz, despite the
sampling frequencies not having an integer ratio. The U-Net
core architecture converted to 44.1 kHz shows slight differ-
ences in the computational evaluation suggesting a slightly
better absolute separation performance, but worse artifact-
related performance than for the models processing 48 kHz

data. A possible reason for this difference may be related to
the pooling and un-pooling operations in the U-Net.

Especially from the listening test (Figure 4), it is clear that
the relevant model parameters learned from data with low
sampling frequency can be transferred to a model for pro-
cessing data on considerably higher sampling frequency. This
property is valid for networks using layers that are frequency-
axis agnostic, i.e., apply the same operation regardless of
the absolute frequency. Considering ConvTasNet [5], the in-
ternal 1D convolutions use the dimension corresponding to
frequency as the channels dimension, and a different number
of frequency bins would result into a different number of
filter channels preventing this trivial conversion. Considering
OpenUnmix [19], the fully-connected layer across frequencies
prevents trivial parameter transfer across sampling frequencies.

In the experiments, the statistics for the spectral whitening
layer were learned from one pass through the mixture signals
in the training. In practice, a smaller data set could be used
for this, or one could use online estimation. We wanted to
eliminate this factor from the evaluation and used the true
statistics of the training data.

We used STFT filter bank for demonstrating the observation,
since it has an analytic form across sampling frequencies
and transform lengths. Possibly also other filter banks can be
similarly used as long as the spacing in the time/frequency
grid remains constant, as discussed in Sec. II-A. Finally, the
application of dialogue separation was considered, for which
speech is the target signal, which is particularly rich below
4 kHz. The transferability of the learned parameters might
work to different extents in other source separation tasks with
different target types. This should be investigated in future.
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Fig. 4. Listening test results shown with 95% confidence intervals (Student’s t-distribution, 12 listeners) per item and test condition, and overall on the right.
The items include female (f) and male (m), as well as German (ger) and English (eng) samples, and different input SI-SIR (reported at the end of the each
item name). The constant order of the conditions is shown by the legend. Best viewed in colors.

VI. CONCLUSIONS

We have observed that in some DNN architectures for audio
source separation, the relevant model parameters are indepen-
dent of the sampling frequency of the audio. This allows,
e.g., using training data with multiple sampling frequencies
for training a single model, or training a model with one
sampling frequency and using it on another. In an experiment,
we transferred the parameters from a model trained with 8 kHz
sampling frequency data to a model for processing 48 kHz
sampling frequency data, and no significant perceptual quality
difference was observed with respect to a native 48 kHz model.
The training speed was up to 7-10 times faster, depending on
the core DNN architecture.
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