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Abstract—Voice activity detection serves as an essential pre-
processor in modern speech processing systems. It classifies audio
segments into speech and nonspeech. Many state-of-the-art meth-
ods have been proposed to increase the detection accuracy. How-
ever, there are still significant limitations to retaining high per-
formance while keeping low computation complexity, especially
in handling unseen noises. This paper proposes a computation-
efficient neural network using a multi-channel audio feature. The
audio feature is contextual-aware with positional information
and is represented in a three-channel way, similar to RGB
pictures, which enables convolutional kernels to capture more
information simultaneously. Meanwhile, we introduce channel
attention inverted blocks to build a computation-efficient neural
network. Our proposed method shows superior performance with
extremely few floating point operations as compared with baseline
methods.

Index Terms—voice activity detection, channel attention,
computation-efficient, deep neural network

I. INTRODUCTION

Voice Activity Detection (VAD) is an essential component
of speech processing systems. Its goal is to determine the
presence or absence of human speech in audio segments,
which can be considered a binary classification problem [1].
Despite decades of research and development [2]–[5], two key
challenges remain. The first is the bad performance in dealing
with unseen noises at severe signal-to-noise ratio (SNR);
the second is numerous calculations that deep learning-based
methods will have to execute.

Early VAD methods detect abrupt changes in speech energy
level, zero-crossing rate [6] and frequency domain properties
such as spectral or cepstral [7]. However, those classifiers only
work well when speech power is greater than noise. And their
decision-making mechanism is based on predefined thresholds
of selected features, which has significant limitations when
handling real-world noises with varying SNR levels. As a
result, these algorithms cannot maintain stable performance
under different circumstances. The statistical signal processing
then becomes a trend of VAD research. The statistical model-
based method [8] and a machine-learning technique-assisted
statistical model [9] further improved the detection accuracy.
They can achieve reasonably good performance when han-
dling with stationary noise at high SNR levels; meanwhile,
keep low consumption of computation resources [10]. But
non-stationary or burst noises from real-world scenarios will
drastically degrade the performance.

As computational and data resources have grown, deep
learning has been extensively exploited in advanced speech
and language processing [11]. It uses large-scale multiple
domain data to train a sophisticated model that can map
real-world data to desired targets and shows superior gener-
alization ability than earlier statistical models in real-world
applications. Recently, many authors conducted deep learning-
based VAD research by making use of high-dimension features
such as spectrogram [12], Mel-Frequency Cepstral Coeffi-
cient (MFCC) [13], Log-Mel spectrograms [14]. The Multi-
Resolution Cochleagram (MRCG) feature [15] was first pro-
posed for classification-based speech separation tasks. It de-
livered the best results among many other features. The
authors of [10], [16] and [17] have also demonstrated the
superior performance of the MRCG feature with its dynamic
information on the VAD task.

Many neural network architectures have been exploited
to perform VAD. The LSTM-RNN [18] was employed for
VAD due to its ability to encode long short-term contextual
information from a sequence of frame features. However,
audio usually contains thousands of frames, making LSTM-
RNN much slower than other models due to its sequential
processing characteristic. The boosted DNN [10] utilized
multiple frames features and labels as input and output of DNN
in training phase. It uses fully-connected layers with hundreds
of neurons in each layer, making the neural network unable to
explore deeper hidden features because the computation cost
will increase dramatically as more layers added. In [12], a
combination of CNN and GRU neural networks was shown
to have achieved good performance on challenge tests. The
temporal information is still learned by a sequence model.

In previous studies, MRCGs and their dynamic information
were arranged in one-dimensional or single-channel two-
dimensional formats, resulting in a weak connection between
MRCGs and dynamic information. In RGB pictures, every
pixel is a combination of different intensities of red, green and
blue. We are inspired to propose a multi-channel representation
that makes MRCG features provide corresponding dynamic
information in the same position to enhance the connectivity.
In addition, we add order information to each channel of
features explicitly by positional encoding [19]. To overcome
the problem of high computation complexity and achieve
channel attention, we exploit the MobileNetV2 [20] framework
in conjunction with the squeeze-and-extraction modules [21].
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(a) 1-D Feature (b) Sigle-Channel 2-D Feature (c) Multi-Channel 2-D Feature and Positional Mask

Fig. 1: Feature Arrangement

II. PROPOSED MODEL

The proposed computation-efficient voice activity detector is
a frame-level binary classifier that incorporates the contextual
information of the current frame to determine whether the
frame contains human speech.

A. Feature Extraction

First, the original audio is segmented into frames by a
20 ms long sliding window with 10 ms overlap between
every two frames. The audio consists of N frames, each with
acoustic feature and ground truth label denoted as xn and yn
respectively, n = 1, 2, . . . , N . The acoustic feature of each
frame consists of Multi-Resolution Cochleagrams (MRCGs)
[15], and their first and second derivatives, ∆ and ∆∆.
The ∆ and ∆∆ are employed to capture temporal dynamics
information. The dimension of these three feature components
is the same and denoted as d. The acoustic feature vector and
the ground truth are written as

xn = [MRCG1, . . . ,MRCGd,∆1, . . . ,∆d,

∆∆1, . . . ,∆∆d]
(1)

yn =

{
0, nonspeech
1, speech

(2)

To exploit the contextual information, we concatenate j
frames before the current frame xn, and j − 1 frames after
xn to form a context-aware feature Xn as given below

Xn = [xn−j , . . . , xn−1, xn, xn+1, . . . , xn+j−1] (3)

where j is a tunable parameter that will be discussed in
section V. Next, the above context-aware feature vector will
be transformed into a two-dimensional format by vertically
stacking the features of different frames. Finally, the proposed
feature arrangement separately extracts ∆ and ∆∆ of all
frames as two channels and then stacked with MRCG. The
feature arrangement process is shown in Fig. 1.

B. Positional Mask

Despite the addition of neighbouring frames’ information,
the sequence order is still ignored. The positional mask utilizes
Positional Encoding (PE) [19] to assign a unique encoding
value for every position in the feature. It takes the advantage
of no training parameters required, as opposed to RNNs.
Since ∆ and ∆∆ reflect temporal dynamics of MRCG at
the corresponding position, all three channels in the proposed

feature share the same positional mask. Also, the size of the
positional mask remains the same as the proposed feature, as
illustrated in Fig. 1c. The positional mask values are calculated
as

PM(n,2i) = sin(n/100002i/d)

PM(n,2i+1) = cos(n/100002i/d)
(4)

where n represents frame index and i is the dimension index.

C. Model Architecture

The structure of our proposed computation-efficient neural
network for VAD is depicted in Fig. 2. The backbone of the
neural network is MobileNetV2 [20] that is usually used in
computer vision tasks, such as image classification, object
detection and image segmentation. It retains high performance
while significantly decreasing the computation complexity and
memory consumption.

Fig. 2: Model Overview

(a) Inverted Block (b) Channel-Attention Inverted Block

Fig. 3: Inverted Blocks Structure

The proposed multi-channel 2-D feature is input to the
model. The positional mask is then applied to the input feature
to add sequence order information. Subsequently, the first
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convolutional layer employs 32 filters of the kernel size (3, 3)
with stride 2. It extracts local details of the input over time
and frequency domain and yields output feature maps with
half-size of the input feature.

The middle part of this model is a sequence of bottleneck
layers. Each bottleneck contains m concatenated inverted
blocks. The structure of inverted blocks is described in Fig. 3.
If the parameter s of the bottleneck layer is 2, the first inverted
block has stride 2 in its depth-wise convolution layer, rest
m−1 inverted blocks have stride 1 and are added with channel
attention. Here we call the inverted blocks having channel
attention as channel-attention inverted blocks (CAIBs). One
inverted block consists of a point-wise convolution layer, a
depth-wise convolution layer and a linear point-wise convolu-
tion layer. Except for the linear point-wise convolution layer,
every convolution layer is followed by batch normalization and
non-linear activation ReLU6. The first point-wise convolution
layer increases the number of channels by t times, where
t is the expansion ratio. After depth-wise convolution, the
last linear point-wise convolution layer reduces the number
of channels to c. CAIB has the same number of input and
output channels. CAIB replaces the shortcut connection of
inverted residual block [20] by a squeeze-and-extraction (SE)
module [21] to add channel attention. This SE module first
conducts global pooling to input feature maps to get a result
of (1, 1, c) shape, then two fully connected (FC) layers reduce
and increase the number of channels by reduction rate r times,
respectively. During this process, two FC layers learn the
importance of different channels. Finally, a fully connected
layer is employed as the classifier after the average pooling
along height and width dimensions. The entire model setting
is stated in Table I and the lite version is shown in Table II.

TABLE I: Proposed Model Setting

Input Operator t c m s
32×128×3 conv2d - 32 1 2
16×64×32 bottleneck 1 16 1 1
16×64×16 bottleneck 6 24 2 2
8×32×24 bottleneck 6 32 3 2
4×16×32 bottleneck 6 64 4 2
2×8×64 bottleneck 6 96 3 1
2×8×96 bottleneck 6 128 1 1
2×8×128 conv2d 1×1 - 1280 1 1

2×8×1280 avgpool - - 1 -
1×1×1280 linear - 2 1 -

III. EXPERIMENTS

A. Experimental Setup

a) Dataset: The clean speech corpus is taken from
TIMIT dataset [22], which provides ground truth labels at the
word level. From the observation of labels, speech segments
take up much higher proportions than nonspeech segments,
which may lead to the problem of class imbalance. Therefore,

TABLE II: Proposed Lite Model Setting

Input Operator t c m s
32×128×3 conv2d - 32 1 2
16×64×32 bottleneck 1 16 1 1
16×64×16 bottleneck 6 24 2 2
8×32×24 bottleneck 6 32 3 2
4×16×32 bottleneck 6 64 3 2
2×8×64 bottleneck 6 96 1 1
2×8×96 conv2d 1×1 - 960 1 1

2×8×960 avgpool - - 1 -
1×1×960 linear - 2 1 -

we injected 1-second-long blank segments at the beginning
and end of each audio. Correspondingly, ground truth labels
were also modified to take into account these blank segments.
The training set of TIMIT was augmented with fifteen types of
additive noises from NOISEX-92 [23] at five levels of SNR,
i.e., -10, -5, 0, 5, 10 dB. We used 90% of the augmented
training set for training and the rest 10% for validation.

In the test stage, we use TIMIT test dataset as clean speech,
and AURORA [24] noise set containing eight types of unseen
noises for data augmentation. The test SNR has five levels
ranging from -10 to 10 dB at increment of 5 dB.

b) Baseline Models: For performance comparison pur-
poses, several supervised and unsupervised methods are used
as the baseline; they are CNN, 2-D CNN, CRNN, 2-D CRNN
[12], rVAD [25]. Both baseline approaches and proposed
method use MRCG, ∆ and ∆∆ as training feature, but
they are arranged in different ways to show the effectiveness
of incorporating contextual information and fusing dynamic
information. Specifically, CNN and CRNN use 1-D feature as
shown in Fig. 1a, 2D-CNN and 2D-CRNN use 2D-feature as
shown in Fig. 1b and the proposed method use multi-channel
2-D feature depicted in Fig. 1c. For CRNN and 2-D CRNN, we
follow the model architecture described in [12]. The structures
of CNN and 2-D CNN follow the convolutional part of CRNN
and 2-D CRNN, respectively. The rVAD is a state-of-the-art
unsupervised statistical method for VAD.

c) Training Setting: All audio segments, including clean
speech and noise, are resampled to 16kHz. We pre-extract each
frame’s feature, and the dimension parameter d is set as 128 for
each component. The contextual range parameter j is set to 16.
The z-score normalization is only performed on the training
set, and the test set remains unprocessed. All baseline and
the proposed models are trained with SGD optimizer, using
momentum 0.9 and weight decay 0.0001, and cross-entropy is
selected as the loss function. The number of total training
epochs is 50. The learning rate was adjusted dynamically
at the training phase [26]. Specifically, it linearly increases
from 0 to the initial learning rate of 0.1 within 10 warm-
up epochs. It decreases to the final learning rate of 0.001
in another 30 epochs using cosine decay strategy [27]. The
learning rate remains at 0.001 for last 10 epochs. The batch
size for training and validation is 64. We employ gradient
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clipping with a maximum L2-norm of 5 to avoid gradient
explosion. The weights of all convolutional layers and linear
layers are initialized by Kaiming normal initialization [28],
while the initial weights of batch normalization layers are set
as 1. The initial biases of the last linear layer are set to 0.

d) Evaluation Metric: The Area Under the Curve (AUC)
is employed as quantitative performance evaluation metric for
the proposed and baseline methods.

B. Results and discussion

Table III shows the AUC comparison results of different
methods at various SNR levels. For every SNR level, eight
types of noises are tested and the results are then averaged
to get the final AUC value of each method. As seen from
Table III, the proposed method and its lite version outperform
other methods over 4 SNR levels. In Fig. 4, we select two
noise scenarios, restaurant and street for indoor and outdoor
environments, to show more details. The overall performance
of all methods in the restaurant noise is much worse than in the
street noise, as their worst AUCs at -10 dB SNR are about 55%
and 70%, respectively. Because in a restaurant environment,
noise is more concentrated and from the babble sound. Even
so, our method outperforms other methods at the whole range
of SNRs.

TABLE III: AUC(%) Comparison

SNR rVAD CNN 2D-CNN CRNN 2D-CRNN Proposed Proposed (lite)
10 93.64 91.55 90.06 93.05 91.62 96.44 96.81
5 91.97 88.57 88.98 91.01 88.87 95.00 93.89
0 84.22 84.03 86.57 85.43 83.73 91.53 87.24
-5 75.05 81.58 84.80 80.81 79.71 86.47 79.75

-10 68.83 79.41 83.18 77.69 77.83 82.49 74.03

Fig. 4: AUC(%) Under Difference Scenarios

To investigate how the number of neighbour frames will
influence the model performance, we conducted four experi-
ments with 40, 32, 24, 16 neighbour frames with the current
frame included. The parameter j is set as 20, 16, 12, 8,
respectively. We tested the four cases with eight types of
noise in the test set at 10 dB SNR and then averaged them
to get the final AUC result. Table IV describes test results
that indicate the positive correlation between the number of
neighbor frames and FLoating Point Operations (FLOPs).
Here, we used a public package in [29] to count the number of
FLOPs. However, the performance does not follow the same
rule, where 16 frames even can be comparable to 40 frames.
But it shows a great improvement after changing from 16 to
32 frames. Because the feature map size is always reduced by

half and it will lead to information loss when the number is
not the power of 2. We finally chose 32 neighbour frames as
a performance-FLOPs trade-off solution.

TABLE IV: Discussion on Different Number of Neighbour
Frames

# of neighbor frames 40 32 24 16
FLOPs(M) 66 48 42 24
AUC(%) 93.22 96.44 90.80 93.19

Table V shows performance and FLOPs comparison be-
tween baseline deep learning methods and our proposed
method. We averaged AUC results in Table III for each method
to get an overall AUC performance. From the observation
of test results, our proposed method has a more robust per-
formance than other baseline methods. In addition, the lite
version of our proposed method has better performance even
if it requires 21 times fewer FLOPs than the CRNN methods.
Also, the best performance of 90.39% AUC is achieved by
our method. The results in the table also demonstrated that
our methods require moderate computation while leading to
better performance.

TABLE V: Computation Cost and Performance Comparison
Among Deep Learning-Based Models

Model CNN 2D-CNN CRNN 2D-CRNN Proposed Proposed(lite)
# of param (329K) (399K) (935K) (732K) (854K) (349K)
FLOPs(M) 294 120 642 324 48 30
AUC(%) 85.03 86.72 85.60 84.35 90.39 86.34

IV. CONCLUSION

In this paper, we have proposed a new approach of feature
arrangement that allows convolutional kernels to capture and
fuse multi-channel information. We have also employed chan-
nel attention to help the neural network to learn the importance
of different feature maps. Experiments demonstrated that our
proposed method provides a better performance in dealing
with a variety of unseen noises. Meanwhile, for some specific
noises, it yields a significant performance improvement as
compared to reference methods. We have also shown that our
method requires a lower computational cost.
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