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Abstract—The main goal of this work is to provide fine-grained
transfer of expressivity in various speaker’s voices for which no
expressive speech data is available. Our approach conditions a
multispeaker Tacotron 2 system with latent embeddings extracted
from phoneme sequence, speaker identity, and reference expres-
sive Mel spectrogram. The proposed system utilizes attention
modules for discovering local and global expressivity attributes.
Additionally, location-sensitive attention is applied in the decoder
to learn the alignment between phoneme sequence-Mel spectro-
gram pair.

In addition to conventional objective metrics for speech
synthesis, we used cosine similarity and character error rate
(CER) measures for the evaluation of transfer of expressivity
and intelligibility. The obtained results demonstrate the presented
cosine similarity metric for speaker and expressivity is consistent
with the subjective evaluation. Thus, the usage of multiple
evaluation measures provides a way to estimate the strength
of emotions and the speaker’s voice for transferred expressivity
in the target speaker’s voice. The obtained results show that
presented fine-grained TTS systems performed better than the
Tacotron 2 based baseline systems.

Index Terms—expressivity, transfer learning, text-to-speech

I. INTRODUCTION

The main objective of the proposed work is to transfer
the expressive attributes to synthesize speech without ex-
plicit recordings of expressive speech for the target speaker’s
voice. Throughout this paper, we consider only the emotional
attributes of expressivity in speech. Abundant research has
been conducted for expressivity transfer in the context of the
end-to-end (E2E) text-to-speech (TTS) system [1]. Besides
expressivity transfer, many approaches have been proposed
in the context of style transfer and prosody transfer, where
audio-books, films, dialogues are used to control the style or
prosody [5]–[7], [19]. The labeling of styles in audiobooks is
an arduous task due to a large number of possible variations
in a single emotion or style. This creates difficulty in the
development of expressive TTS with predefined emotions. The
expressivity transfer plays a vital role in creating expressive
TTS for a new speaker, where one has to build the expressive
speech corpus every time a new speaker’s voice is augmented
to multispeaker TTS. The creation of an expressive speech
corpus is an expensive process in terms of the time required
as well as the cost involved in the recording.

The current E2E TTS systems heavily rely on a sequence
to sequence learning framework [2]–[4]. The sequence of

phonemes is mapped to the Mel spectrogram, where align-
ment between phoneme-Mel spectrogram is learned through a
location-sensitive attention mechanism [27]. Many techniques
have been proposed to use a coarse-grained fixed-length latent
representation of expressivity to transfer the desired emotion
to the new speaker’s voice [15], [16], [18], [19], [21]. The
primary goal of the coarse-grained technique is to provide a
time-independent fixed dimensional embedding to represent
expressivity. For transfer of expressivity, reference encoder is
implemented with various deep learning architectures such as
Global style token (GST) [16], Variational Autoencoder (VAE)
[20], Gaussian mixture VAE (GMVAE) [22]. The reference
encoder creates a fixed-length latent variable, representing ex-
pressivity or prosody. Thereafter, the extracted latent variable
is concatenated with text embedding and passed through a
decoder network to synthesize speech in desired expression or
prosody, or style. Even though these approaches have shown
promising results, they still lack in terms of fine-grained
control over expressivity transfer which is conditioned on the
sequence of phonemes.

In the proposed work, we use three attention mechanisms
at multiple stages (MSA) of multispeaker expressive TTS.
The location attention generates expressive weights using
outputs of text encoder and reference encoder. This expressive
attention weight uncovers the desired emotional strength to
be synthesized which is dependent on the phoneme sequence.
Then, the self-attention layer featuring salient expressivity in-
formation from the output of the reference encoder. Thereafter,
the output of the self-attention layer is passed through the
GMVAE layer to create a global representation of emotion.
Lastly, location-sensitive attention for creating alignment be-
tween phoneme sequence and predicted Mel spectrogram is
used in the decoder module.

This paper implements a two-staged training approach,
firstly the same pair of reference Mel spectrogram and target
Mel spectrogram is provided for training of proposed archi-
tecture. When model parameters of proposed architecture start
converging, cluster sampling is employed to provide reference
Mel spectrogram belonging to the same expressive label,
which is selected randomly. This process avoids the source
speaker leakage, where synthesized speech has a voice quality
of reference Mel spectrogram contrary to the target speaker’s
voice.

180ISBN: 978-1-6654-6798-8 EUSIPCO 2022



Reference 
encoder

Self attention

Positional 
attention

Text encoder

GMVAE

Grapheme to 
Phoneme

Text

Speaker id Speaker 
encoder

Location 
sensitive 
attention

Decoder

Reference Mel 
spectrogram

Predicted Mel 
spectrogram

Ze_attention 

Zs

Ze

Ztext 

Oref_mel

Fig. 1: Framework for multi-stage attention based fine-grained expressivity transfer in Multi-stage-attention (MSA) II TTS
system

II. RELATED WORK

A fine-grained VAE framework is proposed to extract latent
variables at each token of phoneme embedding [8]. This
approach uses sequential prior in a discrete latent space
implemented with the help of vector quantization, where each
token of phoneme embedding is aligned to the target Mel spec-
trogram. This work is further extended by creating multilevel
alignment for phoneme, word, and utterance [9]. Instead of
creating multilevel alignment, we propose to use variable-
length latent representation from the reference encoder to
create expressive attention weights. These attention weights
emphasize emotional prosody extracted from reference Mel
spectrogram and trained without any explicit cost function
such as vector quantization loss.

Similar to our approach, fine-grained control over prosody
is achieved by dot-product attention from phoneme embedding
and output of reference encoder in single speaker TTS setting
[10]. In addition to emotional attention weights, we extracted
global latent expressive information using the GMVAE layer.
The GMVAE creates hierarchical disentanglement of a latent
variable over the expressive latent attribute in an unsupervised
setting. The global latent variable assists in influencing overall
expressivity in synthesized speech.

III. BASELINE MODELS

The baseline TTS system use system architecture stated in
Tacotron 2 [27], with the addition of an expressivity encoder.
The expressivity encoder is implemented using Global style
token (GST) [16] and Variational autoencoder (VAE) [18].
First, a sequence to sequence acoustic model predicts mel-
spectrograms from a sequence of phoneme-level linguistic
inputs, along with expressivity embedding and speaker embed-
ding as explained in [11]. Then a Waveglow neural vocoder
converts the mel-spectrograms into a high fidelity audio wave-
form [12].

IV. PROPOSED ARCHITECTURE

For developing fine-grained expressive end-to-end TTS, we
modified the multispeaker Tacotron 2 system described in [11].
The proposed approach takes input as text, reference Mel
spectrogram, and speaker identity. The text is mapped into
a sequence of phoneme identity using explicit grapheme to
phoneme converter. We used the same text encoder as used
by Tacotron 2 to create text embeddings, ztext. The fixed
dimensional speaker embedding, zs, is extracted from the
speaker encoder for provided input speaker identities.

We extracted the expressivity information using a reference
Mel spectrogram. The reference Mel spectrogram is passed
to the reference encoder, which generates a segmental repre-
sentation of expressivity, denoted as OrefMel. The reference
encoder comprises six layers of stacked 2D convolutional
layers with batch normalization. The gated recurrent units
are used for recurrent pooling to compress variable-length
OrefMel to a fixed dimensional vector. Then, it is passed
through the self-attention layer to highlight salient expressivity
features. We employed a hierarchical generative model based
on multivariate Gaussian mixture variational autoencoder [15]
to disentangle the global representation of expressivity denoted
as ze. The GMVAE layer models expressivity as latent at-
tributes using a mixture of Gaussian distribution. This allows
the discovery of hidden expressive attributes and makes it
easier to disentangle latent space.

For fine-grained expressivity transfer, we extract local in-
formation by obtaining attention weights as a correlation be-
tween text embedding and segmental representation, OrefMel.
We integrated both representations using location-sensitive
attention, which aligns the ztext and OrefMel. This attention
output provides insight into expressivity strength for each
sequence of text embedding. The output of attention is denoted
as ze,attention, which has the same length, Ltext as of text
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embedding.
In case of MSA I, speaker embedding, global expressive

embedding, and expressive attention outputs are concatenated
together to obtain encoder output vector from all encoders
as Ltext × (zs, ze, ze,attention). After that, we experimented
with another system termed MSA II. The proposed system
MSA II is shown in Fig 1. The main extension in MSA II is
that speaker embedding, global expressive embedding, expres-
sive attention outputs, and text embedding are concatenated
together to obtain encoder output vector from all encoders as
Ltext × (zs, ze, ze,attention, ztext), as described in Fig 1.

We applied a third attention mechanism, location-sensitive
attention, to align the target Mel spectrogram and encoder
output. The decoder uses the encoder output to generate
the Mel spectrogram frame by frame. The output from the
previous frame is first passed through the pre-net. The pre-
net is composed of fully connected layers with the ReLU
activation function. The predicted Mel spectrogram from the
pre-net and recurrent network is passed through the post-net.
We used the same implementation of post-net as the Tacotron
2 system.

V. DATA PREPARATION

We have used 4 French Female speech synthesis corpora
for implementing an end-to-end multispeaker expressive TTS
system. The speech corpora used are Lisa neutral speech cor-
pus (approx. 3hrs, in house speech synthesis corpus), SIWIS,
neutral speech corpus (approx. 5hrs) [30], Synpaflex speech
corpus (approx. 7hrs) [31], and Caroline expressive speech
corpus [32]. Caroline’s expressive speech corpus consists of 6
emotions namely joy, surprise, fear, anger, sadness, and disgust
(approx. 1hr for each emotion). Besides expressive speech,
Caroline speech corpus also has neutral speech recorded for
approximately 3hrs. Each speech corpus is split into train,
validation, and test sets in 80 : 10 : 10 ratio respectively.
We have used a sampling rate of 16000 Hz and extracted
Mel spectrograms as acoustic features to be predicted by the
end-to-end TTS system. We have applied STFT with an FFT
length of 1024, hop length of 256, a window size of 1024,
and extracted Mel spectrograms using 80 Mel filters.

VI. EXPERIMENTAL SETUP

For training the baseline TTS systems, we used the same
model hyperparameters as explained in [16], [18], [27] for
implementing the Tacotron 2 system and expressivity encoders
based on GST, VAE. We have used a 256 dimensional latent
variable of expressivity for both GST and VAE. We used 8
heads for the implementation of the self-attention layer. The
latent representations, ze, zs, ztext, zeattention, and OrefMel

are set to 256 dimensions. For training the TTS systems, we
incorporated two losses for training the TTS systems, which
are mean squared error loss on predicted Mel spectrogram and
gate loss on the decoder’s location-sensitive attention layer.

The variational inference-based frameworks (VAE, GM-
VAE, and MSA) often suffer from Kublack Leibler (KL)
annealing problem. In KL annealing, the divergence term

abruptly drops to a value close to zero. Therefore, we mul-
tiplied the KL divergence term with an additional weight of
0.001 and gradually increased over the training epoch with
0.0001. This technique is also used for training baseline TTS
systems with an expressivity encoder implemented for GST
and VAE. We have incorporated Waveglow [33] based neural
vocoder for synthesizing speech waveform and trained it on 4
French speech synthesis corpora.

VII. RESULTS

A. Objective evaluation

We used Mel Cepstrum Distortion (MCD), F0 Root Mean
Squared Error (F0 RMSE), and Band aperiodicity distortion
(BAP) for an objective evaluation between reference speech
samples and synthesized speech samples. The objective evalu-
ation results are presented in Table I and explained in section
VII.

Due to the unavailability of reference emotional speech
samples for Lisa, Siwis, and Synpaflex speech corpora, we pro-
pose to conduct an objective evaluation of expressivity transfer
using cosine similarity score and recognition performance. We
develop emotion recognition and speaker recognition systems
trained on French speech synthesis corpora.

We implemented a convolutional recurrent neural network
model for recognition tasks trained using the cross-entropy
loss function. The pre-computed mean of each label of recog-
nition systems is compared with embedding extracted from
synthesized speech. The higher cosine similarity scores for
speaker and expressivity indicates better expressivity transfer
without retaining speaker quality from the reference mel
spectrogram used. In addition to cosine similarity, we also
measure intelligibility by computing character error rate (CER)
with acoustic model of automatic speech recognition system
[13] trained on French language.

B. Subjective evaluation

At first, we evaluated the multispeaker expressive TTS sys-
tems using Mean Opinion Score (MOS) [34] based listening
test. In this work, we used the absolute category ranking
scale. Each listener had to assign a score for synthesized
speech utterance on a scale between 1 to 5 considering the
intelligibility, naturalness, and quality of speech utterance.
Suppose the speech quality is bad the listener will then assign
the score 1 and if the speech quality is excellent then the
listener will assign the score 5. Each listening test consists of
10 randomly selected speech files from the test set for each
model. A total of 20 French listeners participated in this MOS
test and results are displayed in Table I with an associated 95%
confidence interval.

The main goal of this work is to transfer the emotion
as expressive attributes to the target speaker’s voice without
altering the speaker’s voice characteristics. As there is no
possible way to extract quantitative results for evaluation of
transfer of expressivity without reference to expressive speech
samples, we opt for speaker MOS and expressive MOS as a
qualitative measure for expressivity transfer.
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TABLE I: Subjective and objective evaluation of E2E TTS sys-
tems on text-to-speech task, where reference CER is 13.24%

Model MOS MCD F0 RMSE BAP CER
GST 3.51 ± 0.3 4.36 18.23 0.83 19.70
VAE 3.38 ± 0.4 4.76 18.79 0.88 19.36
MSA I 3.81 ± 0.2 4.49 16.68 0.82 17.29
MSA II 3.85 ± 0.2 4.51 16.66 0.83 16.59

TABLE II: Subjective and objective evaluation of E2E TTS
systems on expressivity transfer task, where reference CER is
7.22%

Model CER Speaker Expressive Speaker Expressive
MOS MOS similarity similarity

GST 31.08 2.57 ± 0.2 3.05 ± 0.2 0.62 0.53
VAE 31.15 2.71 ± 0.3 3.12 ± 0.2 0.69 0.55
MSA I 25.74 2.75 ± 0.3 3.40 ± 0.3 0.68 0.59
MSA II 22.85 2.83 ± 0.3 3.58 ± 0.2 0.68 0.61

For speaker MOS, we instructed the listeners to assign
the score between 1 (bad) and 5 (excellent) to the speech
samples based on the speaker similarity between reference
speaker speech and synthesized expressive speech. Likewise,
for expressive MOS, listeners are directed to provide scores
between 1 (bad) and 5 (excellent) depending on how syn-
thesized speech utterance resembles the expressivity given in
the reference speech utterance. A total of 20 French listeners
performed both listening tests mentioned above, where each
listener scored 18 speech utterances for each speaker-emotion
pair and model. The results obtained through expressive MOS
and speaker MOS are presented in Table II with associated
95% confidence intervals.

VIII. DISCUSSION

Table I details the evaluation conducted to measure the
performance of E2E TTS systems on speech synthesis task
(with reference CER computed on reference speech samples
from datasets). Furthermore, Table II describes the evaluation
of systems on expressivity transfer. From Table I, II, the
objective evaluation results are consistent with the subjective
evaluation metrics namely MOS, speaker MOS, and expressive
MOS. Both MSA I and MSA II systems received the low-
est F0 RMSE score. Consequently, MSA systems performed
better than the baseline coarse-grained TTS systems with
expressivity encoders (GST and VAE). The obtained results
on expressivity transfer clearly indicate that MSA I performs
slightly lower than the MSA II system. Thus, this demonstrates
that concatenation of output of text encoder and expressivity
attention weights plays a vital role in improving overall
performance in synthesizing expressive speech.

Furthermore, we created a matrix for expressivity similar-
ity (in Fig 2) and speaker similarity (in Fig 3) on speech
synthesis results of the MSA II system to measure the sim-
ilarity/dissimilarity with other classes. From Fig 2 matrix
of expressivity similarity scores demonstrates the closeness
of expressivity class anger, joy and surprise, while other
expressivity classes are distant. Thus, it allows us to observe
the capability of the MSA II system to synthesize expressive
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Fig. 2: Scores illustrating closeness of each expressivity class
with others created using expressive similarity score computed
on MSA II TTS system for speech synthesis datasets
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Fig. 3: Scores demonstrating speaker similarity score com-
puted on MSA II TTS system for 4 French speech synthesis
datasets

speech with well-segregated expressivity class, i.e., lesser dis-
ambiguation between expressivity classes. From Fig 3 matrix
for speaker similarity scores provides information regarding
MSA II’s capability to learn the speaker representation dis-
tinctively from other systems. MSA II obtained the lowest
CER scores and the highest expressivity similarity scores,
demonstrating the importance of expressivity representation
at the local and global levels.

IX. CONCLUSIONS

We presented a multi-stage attention approach towards
extracting phoneme-dependent expressivity transfer to create
a local and global representation of expressivity. We proposed
using fine-grained TTS architectures in autoregressive TTS
settings, where information from the expressivity encoder and
text encoder is used to construct expressive attention weights.
These attention weights take into account positional phoneme
information and its correlation with prosodic information from
hidden representation from the expressivity encoder.

Our experimentation with fine-grained TTS systems sug-
gests that concatenation of output of text encoder and ex-
pressivity attention weights plays a vital role in improving
overall performance in synthesizing speech, thus resulting in
better intelligibility than other baseline TTS systems (GST
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and VAE). Additionally, we incorporated various objective
evaluation metrics such as CER, speaker similarity, and ex-
pressive similarity to assist in evaluating various attributes of
the expressive TTS system vital for expressivity transfer.
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