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Abstract—Many application studies rely on audio DNN models
pre-trained on a large-scale dataset as essential feature extractors,
and they extract features from the last layers. In this study, we
focus on our finding that the middle layer features of existing
supervised pre-trained models are more effective than the late
layer features for some tasks. We propose a simple approach
to compose features effective for general-purpose applications,
consisting of two steps: (1) calculating feature vectors along
the time frame from middle/late layer outputs, and (2) fusing
them. This approach improves the utility of frequency and
channel information in downstream processes, and combines the
effectiveness of middle and late layer features for different tasks.
As a result, the feature vectors become effective for general
purposes. In the experiments using VGGish, PANNs ’CNN14,
and AST on nine downstream tasks, we first show that each
layer output of these models serves different tasks. Then, we
demonstrate that the proposed approach significantly improves
their performance and brings it to a level comparable to that of
the state-of-the-art. In particular, the performance of the non-
semantic speech (NOSS) tasks greatly improves, especially on
Speech commands V2 with VGGish of +77.1 (14.3% to 91.4%).

Index Terms—pre-trained model, feature fusion, global pool-
ing, general-purpose audio representation

I. INTRODUCTION

Pre-trained models are essential building blocks as feature
extractors to transfer learned representations from large-scale
datasets. In the audio domain, we can find many applica-
tions using pre-trained models: VGGish [1] pre-trained on
YouTube-8M [2] are used in conservation monitoring [3],
audio captioning [4], and speech emotion recognition [5]; and
PANNs [6] pre-trained on AudioSet [7] are used in heart sound
classification [8] and conservation monitoring [9].

These applications use models as feature extractors without
additional training, but supervised learning models are known
to specialize in the pre-training dataset domain [10]. On the
other hand, several self-supervised learning models proposed
recently show well-balanced performance on general tasks
[11] [12] [13]. These models learn general-purpose audio
representations and are considered more suitable as feature
extractors.

In this study, we focused on the potential performance of
middle and late layer features of supervised pre-trained models
for various tasks. In our preliminary experiments, the late layer
features of supervised pre-trained models, used in the typical
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Fig. 1: Proposed feature calculation flow. The number of
time frames of layer outputs is adjusted by maxpool, and
the channel and frequency axes are flattened to get feature
vectors along time. Then, both middle and late features are
concatenated to get the final feature embeddings, making the
features effective in general audio downstream tasks. The
middle and late layers are chosen based on the layer-wise
performance for the tasks.

applications, performed better than self-supervised pre-trained
models on sound event recognition (SER) tasks (e.g., ESC-50
[14], UrbanSound8K [15]), while they performed poorly on
other tasks. Surprisingly, however, features from the middle
layer performed differently, worse on SER tasks and better on
other tasks. Our research question is: Can we put the strength
of both features together for general purpose?

We think that the reason for the imbalanced performance of
the supervised learning model could be the training metric and
network architecture. Since the pre-training metric is large-
dataset classification accuracy, the late layers are considered
specialized to the pre-trained dataset domain [10]. In addition,
many of the models based on the image domain network [1]
[16] are not designed to process time-frequency (TF) audio
input effectively for audio downstream use.

To address the aforementioned problems, we propose a
simple approach to calculate general-purpose features by using
the outputs from the middle and late layers of a supervised
pre-trained model. In addition to the proposed approach for
general-purpose feature calculation, our contributions include
showing that the effective layers of the supervised pre-trained
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model are task-dependent and validating in experiments that
the performance of these models can be significantly improved
by using the proposed approach.

Our code is available at https://github.com/nttcslab/
composing-general-audio-repr.

II. RELATED WORK

Feature computation of pre-trained models Existing audio
pre-trained models compute feature vectors similarly to how
image domain models do. VGGish [1] and OpenL3 [17] flatten
all axes (frequency, time, and channel) of the convolutional
layer output into a single embedding vector. COLA [11]
and TRILL [18] apply global averaging or max pooling and
summarize frequency and time frame axes.

These operations can be problems for downstream tasks. For
example, the pitch of the voice is considered necessary for the
speaker recognition task; thus, frequency-wise information is
essential. While voice inflection is vital for speech emotion
recognition; thus time-wise information is needed.

While flattening preserves all the information, it is difficult
to calculate feature statistics (e.g., averaging frequency bins
temporally) from flattened vectors. On the other hand, global
pooling makes information per frequency or time frame un-
available in the later processes. Both of these issues could
impair the utility of the feature vectors in downstream tasks.
General-purpose audio representations Self-supervised
learning models such as COLA [11], BYOL-A [12], and
Slowfast NFNets [13] have been proposed for general-purpose
or universal audio representations pre-trained on AudioSet
without labels. In experiments, these models generally demon-
strate well-balanced performance in tasks.
Multilevel feature fusion In multimodal application re-
search, feature fusion of multilevel (layer) outputs is utilized.
For example, [19] fuses multilayer features from video and
audio encoders. In the image domain, [20] uses the size
transformation function to match the feature size of each
layer to combine multilayer features. In the audio domain,
AudioCaps [21] evaluates various audio features, including
combinations of multi-layer outputs for the audio captioning
task, but not for other tasks.

III. PROPOSED APPROACH

Our approach to improve performance of models for general
tasks consists of calculating feature vectors along the time
frame from layer outputs and fusing middle and late layer
feature vectors. Fig. 1 illustrates the calculation flow.

To calculate feature vectors along the time frame, we first
adjust the number of time frames to a To using maxpool
and then flatten the channel and frequency along time. Ad-
justing the time frame of any layer feature to a To enables
subsequent fusion, whereas flattening transforms the channel
and frequency into vectors without the information loss that
could be caused by averaging or max operations found in
conventional methods:

ẑl = flatten(maxpool(zl, To)), (1)

where zl ∈ RB×Cl×Fl×Tl is the lth layer output, and
B,Cl, Fl, and Tl are the batch size, number of channels, num-
ber of frequency bins, and number of time frames, respectively.
The kernel and stride parameters of maxpool are set to reduce
Tl to To. As a result, ẑl ∈ RB×ClFl×To is calculated as a
feature vector with the time frame adjusted to To.

In the conventional calculation with TF features as input,
flattening all axes transforms features to RB×ClFlTl , making
it difficult to use the features in later processes such as
calculating the statistics of frequency along time. Another
problem is that the global averaging or max pooling transforms
features to RB×Cl . As a result, frequency and time information
is no longer available for downstream tasks. The calculation
by Eq. (1) solves these problems by preserving the information
for all axes and simplifying the usage of feature vectors for
each time frame.

The feature vectors are fused as follows:

z = concat( ˆzM , ẑL), (2)

where ˆzM and ẑL are the features from middle layer M
and late layer L calculated by the Eq. (1), and z ∈
RB×(CMFM+CLFL)×To is the fused feature vector along time.
This calculation concatenates feature vectors from the middle
and late layers for each time frame, which preserves all the
available information from different layers.

Layer M and L are chosen based on the layer-wise perfor-
mance for the tasks. We observed in preliminary experiments
that the late layers of supervised pre-trained models excel on
a set of downstream tasks DL, whereas the middle layers
perform better on other set of tasks DM . We choose the
middle layer M , which shows the best average performance
for DM , and the late layer L, which shows the best average
performance for DL.

While z provides the feature vector per time frame, the
following from PANNs [6] calculates temporal statistics to
make a single vector for variable-length audio.

z̃ = mean(z) + max(z) (3)

This summarizes the time axis as combined statistics of
mean and max operation, and it has performed well in
previous studies [6] [12]. We used the embedding vector
z̃ ∈ RB×(CMFM+CLFL) in the following experiments.

IV. EXPERIMENTS

Here, we show that the performance of each layer of existing
supervised learning models are task-dependent in Section
IV-B. Next, we evaluate performance improvement of these
models using our approach in Section IV-C. Then, we compare
our approach with SOTA in Section IV-D.

We conducted a linear evaluation using three models and
nine downstream tasks. The linear evaluation tests the effec-
tiveness of the features of the pre-trained models by training
a linear model that takes as input the features, and the test
accuracy is the result.
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A. Experimental Details

Linear evaluation details To train the linear model, we
used the validation set for early stopping with a patience of
20 epochs and trained for up to 200 epochs with the Adam
optimizer. We manually tuned the learning rate to get the best
results between 0.00001 and 0.01 for every test. We ran each
evaluation three times and averaged the results.

TABLE I: VGGish layers. The ReLU layer output shape
[(B)atch, (C)hannel, (T)ime, (F)requency] is calculated to
[(B)atch, (D)imension, (T)ime] by Eq. (1).

Layer # Operation Parameters/Output shape

1 Conv (1, 64, kernel=(3, 3), stride=(1, 1))
2 ReLU [B, 64, 96, 64] → Eq. (1) → [B, 4096, 6]
3 MaxPool (kernel=2, stride=2)
4 Conv (64, 128, kernel=(3, 3), stride=(1, 1))
5 ReLU [B, 128, 48, 32] → Eq. (1) → [B, 4096, 6]
6 MaxPool (kernel=2, stride=2)
7 Conv (128, 256, kernel=(3, 3), stride=(1, 1))
8 ReLU [B, 256, 24, 16] → Eq. (1) → [B, 4096, 6]
9 Conv (256, 256, kernel=(3, 3), stride=(1, 1))
10 ReLU [B, 256, 24, 16] → Eq. (1) → [B, 4096, 6]
11 MaxPool (kernel=2, stride=2)
12 Conv (256, 512, kernel=(3, 3), stride=(1, 1))
13 ReLU [B, 512, 12, 8] → Eq. (1) → [B, 4096, 6]
14 Conv (512, 512, kernel=(3, 3), stride=(1, 1))
15 ReLU [B, 512, 12, 8] → Eq. (1) → [B, 4096, 6]
16 MaxPool (kernel=2, stride=2)

(flatten) [B, 12288]
17 Linear (in=12288, out=4096)
18 ReLU [B, 4096] → repeat → [B, 4096, 6]
19 Linear (in=4096, out=4096)
20 ReLU [B, 4096] → repeat → [B, 4096, 6]
21 Linear (in=4096, out=128)
22 ReLU [B, 128] → repeat → [B, 128, 6]

TABLE II: CNN14 convolutional blocks. Block output shape
[B, C, T, F] is calculated to [B, D, T] by Eq. (1).

Block # Output shape

1 [B, 64, T/2, 32] → Eq. (1) → [B, 2048, T/32]
2 [B, 128, T/4, 16] → Eq. (1) → [B, 2048, T/32]
3 [B, 256, T/8, 8] → Eq. (1) → [B, 2048, T/32]
4 [B, 512, T/16, 4] → Eq. (1) → [B, 2048, T/32]
5 [B, 1024, T/32, 2] → Eq. (1) → [B, 2048, T/32]
6 [B, 2048, T/32, 2] → Eq. (1) → [B, 2048, T/32]

Downstream tasks We employed nine tasks widely used in
previous studies [6] [11] [17] [18] [16]: ESC-50 [14] (envi-
ronmental sound classification) and UrbanSound8K (US8K,
urban sound classification) [15] from sound event recognition
(SER) tasks; Speech Commands V2 [22] (SPCV2, speech
command word classification), VoxCeleb1 [23] (VC1, speaker
identification), VoxForge [24] (VF, language identification),
and CREMA-D [25] (CRM-D, speech emotion recognition)
from non-semantic speech (NOSS) tasks; and GTZAN [26]
(music genre recognition), NSynth [27] (music instrument
family classification) and Pitch Audio Dataset (Surge synthe-
sizer) [28] (Surge, pitch audio classification) from music tasks.
Pre-trained models We tested three models: VGGish [1]
and CNN14 from PANNs [6], which are CNN architectures,

and Audio Spectrogram Transformer (AST) [16], which is a
Transformer architecture. The followings describe their details.

1) VGGish: Table I shows VGGish layers, which consists a
stack of convolutional layers followed by three fully connected
(FC) layers, 22 layers in total. This model flattens all axes
before the 17th layer. Since the input time frame length is
fixed to T = 96, we converted the variable length inputs into
feature vectors as follows: encode all the divided segments of
length T of a input into feature vectors, concatenate feature
vectors along time, then apply Eq. (3) to get a single vector
for the input. We use To = 6 which is the number of time
frames of 16th layer output. The layer 18, 20, and 22 outputs
don’t have time axis, then we repeat them To times to form
the time axis. We evaluate all ReLU layer outputs at layers
∈ {2, 5, 8, 10, 13, 15, 18, 20, 22}.

2) PANNs’ CNN14: Table II shows convolutional blocks of
CNN14. CNN14 accepts input with variable length T , and we
set To = T/32. We evaluated all the block outputs.

3) AST: AST is a Transformer model with 12 layers, and
we evaluated layer 2 to 12 outputs using 768-d [CLS] token
embeddings. These embeddings are vectors without a time
axis, unlike in CNN models.

B. Evaluating Layer-wise Performance

In this experiment, we evaluated the performance of each
layer for all models. The output of each layer was transformed
into feature vectors per time frame using Eq. (1), and into a
single vector using Eq. (3). Fig. 2, 3, 4 show the results for
VGGish, CNN14, and AST, respectively.

Fig. 2: VGGish layer-wise evaluation accuracies (%).

Fig. 3: PANNs’ CNN14 layer-wise evaluation accuracies (%).

The results show that the peaks of performance in a layer
are different for each task. For the ESC-50/US8K/GTZAN,
the peaks are in the late layers, while for the other tasks,
they are in the middle layers. This is also clearly shown by
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TABLE III: Pre-trained model accuracy improvements (%) achieved by the proposed approach.

SER tasks NOSS tasks Music tasks

Representation ESC-50 US8K SPCV2 VC1 VF CRM-D GTZAN NSynth Surge Avg.

VGGish 1 68.2 75.1 14.3 9.0 75.7 44.4 75.3 53.9 8.8 47.2
VGGish-Fusion#10#15 86.5 80.9 91.4 54.5 91.6 59.3 70.8 73.6 33.3 71.3
difference +18.2 +5.8 +77.1 +45.5 +16.0 +15.0 -4.5 +19.7 +24.5 +24.1

CNN14 1 90.1 82.0 51.4 8.0 75.0 50.7 79.7 66.0 10.4 57.0
CNN14-Fusion#3#6 93.0 85.8 91.3 50.6 90.5 59.0 77.4 73.8 32.4 72.6
difference +2.9 +3.8 +39.9 +42.7 +15.5 +8.3 -2.3 +7.8 +22.0 +15.6

AST 1 93.5 85.5 71.8 16.5 81.2 57.9 84.3 73.2 25.8 65.5
AST-Fusion#5#12 94.2 85.5 80.4 24.9 87.6 60.7 82.9 77.6 34.6 69.8
difference +0.6 +0.0 +8.6 +8.4 +6.4 +2.8 -1.4 +4.5 +8.9 +4.3
1 The baseline results used the last layer features from the original models.

Fig. 4: AST layer-wise evaluation accuracies (%).

comparing the average peaks for the ESC-50/US8K/GTZAN
tasks in the blue box with the average peak for other tasks
in the green box .

Focusing on the layer-wise results, we see that late layers
perform well on ESC-50/US8K/GTZAN, while on the others,
especially NOSS tasks such as VC1, they perform quite poorly,
showing a substantial gap between tasks. On the other hand,
middle layers with the green box perform worse on ESC-
50/US8K/GTZAN. While no single layer satisfies all task
performances, the late layers perform more imbalanced.

The VGGish results show another problem: the performance
drops after layer #15. One possible reason is that late layers are
specialized to the pre-training dataset. Another reason could
be the difference in calculation; while features up to #15 are
calculated using Eq. (1), the features after #15 are calculated
by flattening all axes. Many VGGish application studies use
the feature from late layer #22 (FC2) [3] [4] [5]; however,
other layer features calculated by using Eq. (1) calculation
potentially become more effective for these applications.

C. Evaluating Proposed Approach

In this experiment, we applied the proposed approach to
VGGish, CNN14, and AST to evaluate the performance im-
provement.

The middle layer M and late layer L were determined for
each model using the results of Section IV-B. For L, we choose
the layer in the blue box , where the peaks of the average
result for ESC-50/US8K/GTZAN, and for M , we choose the
layer in the green box , where the peaks of the average result
for other tasks. Thus, we used M = 10 and L = 15 for

VGGish, denoting the audio representation calculated by the
proposed approach as VGGish-Fusion#10#15. The same goes
for CNN14-Fusion#3#6 for PANNs’ CNN14 with M = 3 and
L = 6, and AST-Fusion#5#12 for AST with M = 5 and
L = 12.

Table III compares the results before and after the ap-
plication of the proposed approach and shows a significant
improvement in performance for all models. In particular,
the performance was greatly improved in the NOSS task,
especially SPCV2, which showed a significant improvement of
+77.1 from 14.3% to 91.4% with VGGish, and improvement
of +39.9 from 51.4% to 91.3% in CNN14.

In addition, the CNN models (VGGish, CNN14) also im-
proved the performance of Surge (pitch classification) signifi-
cantly, suggesting the contribution of local features. The earlier
the CNN layer is, the higher the frequency resolution becomes,
which could make it easier to detect the pitch.

The similar performance improvements of AST in NOSS
and Surge tasks show that the proposed approach is also
effective for the Transformer architecture. As a previous study
[29] showed that early layers attend both locally and globally,
the local feature in the fused earlier layer output possibly
contributed to the improvements, similar to how the CNN layer
does.

The performance of the GTZAN task slightly degraded
for all models, indicating that the proposed approach can
also cause degradation. However, this degradation is small
compared to the overall performance improvements; thus, we
think the proposed approach is generally beneficial.

D. Comparison with State of the Art

The results shown in Table IV indicate that the proposed
approach brings the performance of the existing models to a
level comparable with that of SOTA. It improves the inferior
NOSS task performance while maintaining the SER task
performance at a higher level than that of SOTA models.

These results suggest that existing supervised pre-trained
models have sufficient performance potential, which the pro-
posed approach can exploit. We think that the improved audio
representations could generally serve various tasks.
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TABLE IV: Comparison with state of the art models (%).

SER tasks NOSS tasks Music tasks

Representation ESC-50 US8K SPCV2 VC1 VF CRM-D GTZAN NSynth Surge

SF-NFNet-F0 [13] 91.1 N/A 93.0 64.9 90.4 N/A N/A 78.2 N/A
COLA [11] N/A N/A 62.4 29.9 71.3 N/A N/A 63.4 N/A
OpenL3 [17] 1 79.8 79.3 87.9 40.7 90.1 60.4 73.3 75.6 36.4
BYOL-A [12] 1 83.7 79.1 92.2 40.1 90.2 62.8 73.6 74.1 26.2

VGGish-Fusion#10#15 86.5 80.9 91.4 54.5 91.6 59.3 70.8 73.6 33.3
CNN14-Fusion#3#6 93.0 85.8 91.3 50.6 90.5 59.0 77.4 73.8 32.4
AST-Fusion#5#12 94.2 85.5 80.4 24.9 87.6 60.7 82.9 77.6 34.6
1 Underlined results were obtained in this study using publicly available pre-trained models.

V. CONCLUSION

In this paper, we proposed an approach to improve feature
calculation of existing supervised pre-trained models without
fine-tuning, and showed that the resulting features could serve
as general-purpose audio representations.

The proposed approach first calculates feature vectors
aligned with the time frame to improve the utility of frequency
and channel information in downstream processes. Then, it
fuses feature vectors from the middle and late layers, combin-
ing the effectiveness of these features for different tasks.

In the experiments using VGGish, PANNs ’CNN14, and
AST on nine downstream tasks, we showed that each layer
output from these models serves different tasks, and showed
that the proposed approach significantly improves performance
and brings it to a level comparable to that of SOTA models.
Particularly, the performance of the NOSS tasks greatly im-
proves, especially on SPCV2 with VGGish of +77.1 (14.3% to
91.4%), while maintaining higher performance on SER tasks.

Our proposed approach provides a simple way to exploit ex-
isting supervised pre-trained models as general-purpose audio
representations. It could make future audio application studies
achieve better performance. Our code is available online.
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