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Abstract—In audio classification, differentiable auditory filter-
banks with few parameters cover the middle ground between
hard-coded spectrograms and raw audio. LEAF [1], a Gabor-
based filterbank combined with Per-Channel Energy Normaliza-
tion (PCEN), has shown promising results, but is computationally
expensive. With inhomogeneous convolution kernel sizes and
strides, and by replacing PCEN with better parallelizable opera-
tions, we can reach similar results more efficiently. In experiments
on six audio classification tasks, our frontend matches the
accuracy of LEAF at 3% of the cost, but both fail to consistently
outperform a fixed mel filterbank. The quest for learnable audio
frontends is not solved.

Index Terms—audio classification, CNNs, time-frequency rep-
resentation, adaptive filterbanks

I. INTRODUCTION

Deep-learning-based audio classification models typically
operate on precomputed spectrograms – this holds for Con-
volutional Neural Networks (CNNs) [2], Recurrent Neural
Networks [3], and Transformers [4]. This places the burden
of choosing optimal spectrogram settings for a task on the
practitioner, who may decide not to tune these at all, possibly
resulting in suboptimal performance. Alternatively, models
may be trained directly on raw audio samples. However, this
gives the model much more free parameters, and only matches
the performance of spectrogram-based models when given
large quantities of training data [5], [6]. A solution in between
these extremes is to apply a filterbank that is differentiable
with respect to a small number of parameters, and learn these
parameters along with the classifier.

A recent promising instance of the latter was proposed by
Zeghidour et al. [1] and called LEarnable Audio Frontend
(LEAF). In their experiments, it outperforms earlier proposals
by other authors when evaluated over a range of tasks in
different audio domains (speech, music, environmental audio).
However, as it is based on two convolutions (a Gabor filterbank
and temporal pooling) with large windows and small strides,
and normalization by a sequentially computed exponential
moving average (Per-Channel Energy Normalization, PCEN
[7]), it is two orders of magnitude slower than typical spec-
trograms.

In this work, we propose two modifications of LEAF to
improve computational performance by an order of magni-
tude without hindering trainability or hampering classification
accuracy. Specifically, our modifications are:

filter 0 filter 25 filter 39

LEAF conv 401 // 1 conv 401 // 1 conv 401 // 1
pool 401 // 160 pool 401 // 160 pool 401 // 160

Ours conv 401 // 40 conv 123 // 4 conv 69 // 1
pool 11 // 4 pool 101 // 40 pool 401 // 160

Fig. 1. The original LEAF implementation convolves the input with filters of
401 samples at stride 1, followed by squared modulus and temporal pooling
of 401 samples at stride 160. We reduce filter lengths for higher bandwidths
(dashed lines) and increase stride for lower center frequencies, adjusting
pooling to approximate the original LEAF output.

– We adapt convolution window sizes and strides dynami-
cally for subsets of filters, giving nearly the same results
with less computation (Figure 1).

– We replace the sequentially computed normalization
(PCEN) with a learnable logarithmic compression, tem-
poral median subtraction and temporal batch normaliza-
tion, all of which are parallelizable and thus faster to
compute on Graphics Processing Units.

We evaluate our modifications against the original LEAF and
fixed mel spectrograms on six tasks in three audio domains
(speech, music, environmental audio). Contrary to Zeghidour
et al. [1], we find that none of the frontends has a clear
advantage over the others in terms of resulting accuracy.

The remainder of this paper is structured as follows: Sec-
tion II discusses related work, followed by an introduction of
LEAF and our modifications in Section III. In Section IV, we
present experimental results. Section V concludes the paper.

II. RELATED WORK

Existing attempts at implementing learnable filterbanks can
be divided into categories based on two features of the
filters: (1) The domain of operation, either time or frequency,
and (2) the generation of coefficients, either given directly
or produced by a parameterized function. We will discuss
selected examples of each category.

Sainath et al. [8] learn the coefficients of frequency-domain
filters initialized to a mel filterbank, constrained to their
bandwidth at initialization, for speech recognition. Cakir et
al. [9] remove this constraint, freely learning all coefficients
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for sound event detection. In both cases, filters deviate from
their initial triangular form, but stay close to a mel filterbank.

As examples of frequency-domain parametric filterbanks,
Seki et al. [10] and Schlüter [11, p. 189] learn the center
frequencies of Gaussian and triangular filters, respectively.
Compared to directly learning coefficients, this reduces the
number of learnable parameters and gives better interpretable
filters, but is still based on a predefined, hand-tuned STFT.

Most freedom is attained by learning time-domain filter
coefficients, as done e.g. by Palaz et al. [12], Tüske et al.
[13], Sainath et al. [5] or Zeghidour et al. [14] for speech
recognition. Time-domain filters are often initialized to a
mel [14] or gammatone [5], [13] filterbank and followed by
temporal pooling [5], [12], [14]. Early works failed to match
performance of precomputed spectrograms [12], [13], which
only changed with larger datasets [5] and models [14].

Parametric time-domain convolutions reduce learnable pa-
rameters and introduce inductive biases that may help training
from limited datasets. Existing work includes Sinc [15], Sinc2

[16], Wavelet [17], Gabor [16], [18], Gammatone [16], and
Gammachirp [19] filters with learnable center frequencies
and/or bandwidths for spectral decomposition, and average
pooling [19], max pooling [15], [16] and smoothing windows
[18] for temporal downsampling.

All these works have in common that they are evaluated
on a single dataset, often in the speech domain, leaving
open whether a demonstrated advantage over fixed filterbanks
transfers to other datasets, tasks or domains. In contrast, LEAF
[1] was evaluated on eight tasks, and shown to outperform TF-
banks [14], SincNet [15] and fixed mel filterbanks.

III. METHOD

We will first describe LEAF [1], the starting point of
our work, then detail our modifications of the filterbank and
compression/normalization stages.

A. LEAF

LEAF applies a Gabor filterbank, squared modulus,
temporal averaging and subsampling, and a compres-
sion/normalization in sequence to an audio signal to obtain
a time-frequency representation consumed by a classifier.
Stages are initialized to approximate a mel spectrogram, and
optimized along with the classifier. We will briefly describe
each stage in the following.

Filterbank: The first step is a convolution of the input signal
with complex Gabor filters in the time domain. Given a center
frequency ν, inverse bandwidth σc and odd filter size C, filter
coefficients ct are computed as:

ct = ei2πνt
1√
2πσc

e
− t2

2σ2c for t ∈ {−C − 1

2
, . . . ,

C − 1

2
}

The coefficients are differentiable w.r.t. ν and σc. A filterbank
of N filters is thus parametrized by a vector of N center
frequencies and N inverse bandwidths.

Squared modulus: The N convolved signals are squared
elementwise, resulting in real-valued sequences.

Averaging: Each sequence is convolved with a Gauss win-
dow. Given an inverse bandwidth σp and odd pooling size P ,
window coefficients pt are computed as:

pt =
1√
2πσp

e
− t2

2σ2p for t ∈ {−P − 1

2
, . . . ,

P − 1

2
}

Formally, the N convolved sequences are then subsampled by
keeping every Kth value (practically, a strided convolution is
applied that only computes every Kth output). The averaging
stage is parametrized by a vector of N inverse bandwidths,
such that pooling can be tuned separately for each filter.

Compression/Normalization: Finally, Per-Channel Energy
Normalization (PCEN [7]) is applied to each sequence. Given
ε, α, δ, r and s, and denoting the input sequence as xt, the
output sequence yt is:

yt =

(
xt

(ε+mt)
α + δ

)r
− δr,

where mt is computed using a simple infinite impulse response
(IIR) filter:

m0 = x0, mt = (1− s)mt−1 + s xt

This process is applied separately to each of the N sequences,
using a separate set of learnable parameters for each (except
for ε, which is fixed). The result is a division of each frequency
band by its long-term past magnitude (sequence mt), and a
nonlinear compression by raising to the power of r. Wang et
al. [7] learned the logarithm of α, δ, r; Zeghidour et al. [1]
instead learn the inverse of r and enforce α ≤ 1, r ≤ 1.

B. EfficientLEAF

We are now ready to discuss our changes to the LEAF
filterbank, pooling and normalization/compression stages.

Filterbank: LEAF initializes filters to a mel scale, with
roughly logarithmically increasing center frequencies and
bandwidths. With increasing bandwidth, filter energy concen-
trates in fewer coefficients (see Figure 1). We can thus save
computations by truncating the filter. Specifically, we compute
a filter size Ĉ = b σc and round up to the next odd integer,
where σc is the inverse bandwidth and b can be tuned to trade
accuracy for computation. Khan et al. [17] proposed to do so
for a complete filterbank, here we compute C for each filter
separately. With decreasing center frequency, filter responses
are smoother over time, and change less from sample to
sample. We can thus save computations by increasing the
convolution stride. Specifically, we compute L̂ = d π/ν and
round down to the next divisor of the pooling stride P , where ν
is the center frequency and d can be tuned to trade accuracy for
computation. Since convolution implementations profit from
applying multiple same-sized filters at once, we group adjacent
filters and pick the largest filter size and smallest stride per
group. The number of groups g, ideally a divisor of N ,
becomes another hyperparameter.

Pooling: Both the pooling stride P and the pooling scale σp
need to be divided by the convolution stride L to match results
of the original LEAF. Figure 1 gives the resulting window

206



sizes and strides for matching the default settings of LEAF,
with b = 4.75 chosen to reproduce a maximal window size of
401 at initialization, g = 4, and d = 1 chosen conservatively.

Normalization/Compression: The sequential computation of
the exponential moving average in PCEN is not suited well
for massively parallel hardware. We replicate some of its
effects by different means. As a first step, we compute yt =
log(1+10a xt), where a is a separate learnable parameter for
each frequency band. This results in a nonlinear compression
similar to exponentiation by r. PCEN’s division by an expo-
nential moving average levels out different impulse responses
of recording devices, or static noise floors. As we applied
an (approximate) logarithm, we require subtraction instead
of division. To avoid the exponential moving average, we
subtract the median over the sequence instead (separately per
frequency band). As this improves performance for some tasks
only, reducing it for others, we keep the original sequence as
a second input channel. Finally, we normalize the sequence
with batch normalization over time, using separate learnable
parameters per frequency band and channel.

IV. EXPERIMENTS AND RESULTS

We can now empirically compare EfficientLEAF to LEAF,
and to a fixed mel filterbank. We will first introduce the
datasets used, then describe training and model settings, and
finally present results for three experiments: Our main com-
parison, a hyperparameter optimization of EfficientLEAF, and
an extension to longer input sequences.

A. Datasets

For our experiments, we employ five datasets with six tasks:
– SpeechCommands: one-second recordings of 35 spoken
commands; 84843 training, 9981 validation, 11005 test
– VoxForge: variable-length recordings in 6 languages; 128594
training, 44119 validation, 30136 test
– Crema-D: variable-length recordings displaying 6 emotions;
5144 training, 738 validation, 1555 test
– NSynth: 4-second recordings of 11 instruments in 128
pitches; 289205 training, 12678 validation, 4096 test
– BirdCLEF 2021: variable-length recordings of 397 bird
species; 40836 training, 5637 validation, 16401 test
If no split was published along with the data, we use the one
from tensorflow_datasets1. Unfortunately, Zeghidour et al. [1]
did not publish their splits, and we could not reproduce any.

B. Settings

We set up LEAF to match [1]: An input sample rate of
16 kHz, 40 filters initialized with a mel scale from 60 Hz
(lower bound of first filter) to 7800 Hz (upper bound of last
filter), a convolution and pooling window size of 401 samples,
and a pooling stride of 160 samples. Pooling scales σp are
initialized to 0.4. PCEN is initialized with α = 0.96, s = 0.04,
δ = 2, r = 0.5 and has ε = 10−12. For EfficientLEAF, we set
b = 4.75, d = 1, g = 4, a = 5 as a close match to LEAF, but
we perform a parameter search in our second experiment.

1https://tensorflow.org/datasets, accessed June 12, 2022

For classification, we follow [1] and add an EfficientNet-
B0 [20] backbone with global max pooling instead of global
average pooling, and a single linear classification layer.

To train the model, Zeghidour et al. [1] used ADAM with
mini-batches of 256 randomly chosen one-second excerpts,
and ran 1 million updates at a constant learning rate of 10−4.
This amounts to thousands of epochs depending on the dataset,
and a constant learning rate seems suboptimal. Instead, we
start with an initial learning rate of 10−3, reduce it by a
factor of ten when the validation loss does not improve for
ten consecutive epochs, and stop training when the learning
rate falls below 10−5. This improves results for all frontends.

At test time, we compute predictions for non-overlapping
one-second excerpts and average logits per recording, follow-
ing [1] except that final incomplete excerpts are dropped, not
padded (which skews results as no padding occurs in training).

C. Model Comparison

In our first set of experiments, we compare a set of models
on the six tasks. Starting with the original LEAF, we first
replace the filterbank and pooling with our grouped version,
then replace PCEN with our combination of log compression,
median filtering and temporal batch normalization (“L-M-
TBN”). Finally, we replace the filterbank and pooling with
a fixed STFT-based mel filterbank (also using a window size
of 401 and stride 160) and hold log compression fixed.

Table I lists the results (ignore the second to last column for
now). Focusing on throughput (forward + backprop), we see
that the grouped Gabor filterbank at its conservative settings
is 3x as fast, and replacing PCEN gives another 5% (this will
be more pronounced for longer input sequences). Fixed mel
spectrograms are 100x faster and could even be precomputed.
In terms of accuracy, there seems to be a consistent decline
when replacing PCEN for VoxForge. However, results for Vox-
Forge are either extremely sensitive to the split, or models are
overfitting: On the validation set, accuracies behave inversely,
improving from 74.2% for LEAF to 79.8% for a fixed mel
filterbank. The poor performance of PCEN-based frontends
on Crema-D, the smallest dataset, warrants investigation.

D. Hyperparameter Optimization

EfficientLEAF has three parameters affecting its efficiency
and accuracy: The convolution window size factor b, convo-
lution stride factor d, and number of groups g. We perform
a grid search with b ∈ {2, 4.75, 6}, d ∈ {1, 2, 3, 8, 16} and
g ∈ {2, 4, 8, 10}, doing 3 training runs on SpeechCommands
each. For space constraints, we can only summarize results.
For almost all settings, g = 8 is the fastest. b = 2 slightly
deteriorates results, b = 6 is only marginally slower than
b = 4.75. d scales computational speed almost linearly,
without affecting results on this task in the range of considered
values. This is in line with Dörfler et al. [18], who use a stride
of 21 for a sample rate of 22050 Hz. In Table I, the previous
to last column shows results with g = 8, b = 6 and d = 16,
which match the more conservative settings of g = 4, b = 4.75
and d = 1 at much better efficiency.
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TABLE I
THROUGHPUT OF AUDIO FRONTEND IN EXAMPLES PER SECOND (ON ONE-SECOND EXCERPTS) AND

ACCURACY ON SIX TASKS (MEAN ± STD. DEV. OVER THREE RUNS), FOR FIVE COMBINATIONS OF
FILTERBANK AND COMPRESSION/NORMALIZATION. (*: PARAMETERS FIXED, NOT LEARNED)

Filterbank Gabor Gabor 4G Gabor 4G Gabor 8G-opt STFT-Mel*
Compression PCEN PCEN L-M-TBN L-M-TBN L-M-TBN*

Throughput 250 742 776 9251 85367

SpeechCommands 95.1 ± 0.3 95.1 ± 0.1 95.3 ± 0.2 95.2 ± 0.1 95.1 ± 0.2
VoxForge 91.5 ± 0.4 91.4 ± 0.9 86.5 ± 0.9 86.6 ± 1.0 85.6 ± 0.6
Crema-D 50.2 ± 2.3 50.0 ± 2.6 58.0 ± 2.8 60.2 ± 0.8 58.8 ± 3.2
NSynth Instr. 69.2 ± 0.2 68.3 ± 1.2 70.4 ± 0.5 71.7 ± 0.6 72.1 ± 0.7
NSynth Pitch 92.2 ± 0.1 92.1 ± 0.1 92.7 ± 0.2 92.4 ± 0.1 91.9 ± 0.3
BirdCLEF 2021 42.3 ± 0.7 42.3 ± 0.8 42.0 ± 0.1 42.9 ± 0.1 39.9 ± 1.9

TABLE II
THROUGHPUT AND ACCURACY FOR THE
FIRST, THIRD AND FOURTH MODEL FROM

TABLE I ON BIRDCLEF 2021, TRAINED ON
8- OR 16-SECOND EXCERPTS.

length (s) 8 16
batchsize 32 16

#1 thrpt. 27 12
#1 acc. 71.9 ± 0.4 69.6 ± 0.4

#3 thrpt. 95 48
#3 acc. 71.4 ± 0.9 66.0 ± 2.4

#4 thrpt. 1053 516
#4 acc. 72.2 ± 0.3 69.4 ± 0.3

E. Longer Input Sequences

Following [1], all results discussed so far were obtained
by training and evaluating on one-second audio excerpts. This
recipe is not applicable to every audio classification task. For
example, for weakly-labeled recordings, not every excerpt will
be discriminative, as is the case for the BirdCLEF 2021 data.
In this setting, it will be necessary to train on longer excerpts.

Table II shows results for training and evaluating the
original LEAF, the default EfficientLEAF and optimized Ef-
ficientLEAF on either 8-second or 16-second excerpts, for
BirdCLEF 2021. Two observations are important: (1) longer
excerpts indeed perform dramatically better, and (2) while
EfficientLEAF throughput scales inversely linearly with input
length, LEAF is put at a larger disadvantage, increasing the gap
in throughput. This is due to PCEN: As it has to process each
item sequentially, a batch of 32 8-second excerpts allows fewer
parallel computations than a batch of 256 1-second excerpts,
stalling the GTX 1080 Ti used for testing.

V. DISCUSSION

We have demonstrated that LEAF [1] can be modified to
improve computational efficiency, especially for long input
sequences, without impacting accuracy on downstream tasks.
We also found that LEAF may not be needed: Our deviation
from Zeghidour et al. [1] in training and inference (Sec. IV-B)
and compression (Sec. III-B) improved results, but also nar-
rowed the advantage of LEAF over a fixed mel filterbank.
Whether and why LEAF is beneficial will require further
scrutinization and experiments, and maybe our implementation
(github.com/CPJKU/EfficientLEAF) can speed up this process.

Regarding EfficientLEAF, an interesting feature has not
been explored yet: Since convolution window sizes are chosen
dynamically, it could learn to analyze lower frequencies than
would be permitted by a predefined window size, or be
initialized to cover a much wider range of frequencies than
affordable with a fixed window.

Finally, during experimentation, we observed that learned
center frequencies and bandwidths do not deviate much from
their initial values (in line with [1, A.3]). As in [11, 189–190],
we tried increasing the frontend learning rate. This indeed
allows some frontend parameters to converge, but reduces
classification performance, asking for a better solution.
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