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Abstract—We propose the band-limited impulse invariance
method, which models a continuous-time LTI system in the
discrete-time domain with high accuracy. A given system function
in the Laplace domain is realized in the z-domain as a parallel
connection of IIR and FIR filters. The IIR part is obtained by
using the conventional impulse invariance method, whereas the
FIR part is designed in such a way that it suppresses the aliasing
occurring in the IIR filter. The FIR coefficients are derived
analytically from a band-limited representation of the continuous-
time impulse response. The accuracy of the discrete-time model
is readily adjusted by the FIR length.

I. INTRODUCTION

Digital modeling of continuous-time systems is a common
problem in signal processing. Analog devices such as audio
effects and musical instruments are often emulated by dig-
ital filters [1–3]. Physical systems described by differential
equations (e.g. waves) are also frequently simulated in the
discrete-time domain [4–7]. Spatial signal processing tech-
niques such as sound field analysis and synthesis often rely
on analytical models describing the sound field of interest
[8–12]. For linear time-invariant (LTI) systems, the transfer
function in the Laplace (s) domain is converted into the
z-domain and then realized as a digital filter. Well known
methods for s-to-z conversion are the bilinear transform, the
impulse invariance method, and the matched z-transform [13].
The resulting discrete-time systems typically exhibit spectral
deviations due to aliasing and/or frequency warping. This
can be mitigated by increasing the sampling frequency which
comes at the expense of computational complexity and latency
that might be unaffordable or intolerable in practice. One can
of course resort to numerical filter design methods [14–16].
The design accuracy is, however, sensitive to the choice of
the filter structure and the control frequencies. Moreover, the
filter coefficients cannot be parameterized in terms of physical
variables that describe the system. This might be a significant
disadvantage for latency-sensitive applications.

Several approaches have been proposed to improve the
accuracy of the discrete-time model. Different modifications
were applied to the existing s-to-z conversion methods in
order to meet certain design specifications [17–21]. Higher-
order s-to-z conversion methods were presented in [22–24],
mainly focusing on integrator and differentiator design. In
audio applications, moderate computational cost is often traded
for improved spectral accuracy which is crucial for perceived
audio quality. For instance, the aliasing distortion occurring
in the matched z-transform is compensated by cascading
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Fig. 1: The proposed band-limited impulse invariance method,
applied to a single first-order section and a direct throughput
(p: pole, r: residue, G: direct gain, T : sampling interval).
Please refer to the respective sections for more detail.

correction filters [25, 26]. In [27], Särkkä introduced a state-
space model, where the differential equation describing the
analog filter is numerically solved. This approach achieves
high accuracy which depends on the employed interpolation
order. However, calculating the coefficients is computationally
demanding as it requires numerical integration and the evalu-
ation of matrix exponential.

In this paper, an improved impulse invariance method is
proposed, which is inspired by the approaches for aliasing
reduction in digitally emulated analog waveforms [28]. It is
suited for an accurate and efficient discrete-time modeling
of continuous-time systems. As depicted in Fig. 1, the pre-
sented method exploits the band-limited representations of
the continuous-time impulse responses (Sec. III-A), which is
realized as a parallel connection of infinite impulse response
(IIR) and finite impulse response (FIR) filters. The IIR part is
obtained by using the conventional impulse invariance method
(Sec. II), whereas the FIR filter is designed in such a way that
it cancels the aliasing occurring in the IIR filter (Sec. III-B).
The design accuracy of the overall filter is controlled straight-
forwardly by the FIR length, as will be demonstrated by
numerical simulations (Sec. III-C).

209ISBN: 978-1-6654-6798-8 EUSIPCO 2022



II. IMPULSE INVARIANCE METHOD

This section briefly reviews the impulse invariance method
with the focus on different correction schemes. Let us consider
a continuous-time system represented by a partial fraction
expansion in the Laplace domain (s = σ+iω where σ, ω ∈ R),

Ha(s) =
B(s)

A(s)
= G+

K−1∑
k=0

rk
s− pk

, (1)

where pk ∈ C denote simple poles and rk ∈ C the corre-
sponding residues. The direct throughput has a frequency-
independent gain G ∈ R. The system function is proper,
meaning that the numerator B(s) and denominator A(s) are
of the same order K. The system is assumed to be causal
and stable. The inverse Laplace transform of (1) yields the
continuous-time impulse response [29, Ch. 4],

ha(t) = G · δ(t) +
K−1∑
k=0

rk e
pkt u(t), (2)

where δ(t) denotes the Dirac delta function and u(t) the
Heaviside step function [30, Eq. (1.16)]. Without loss of
generality, only a single first-order section (K = 1) will be
considered in the following. The subscript k is thus dropped.

In the impulse invariance method, a continuous-time system
is realized as a digital filter whose impulse response h[n] is
derived by an ideal time-domain sampling of the continuous-
time impulse response ha(t) [31, Sec. 7.3],

h[n] = T · ha(nT ), n ∈ Z, (3)

with T denoting the sampling period. However, the sampling
of ha(t) is not trivial due to the peculiarities of δ(t) and u(t)
at t = 0.

Strictly speaking, the impulse invariance method cannot be
applied to the direct throughput G · δ(t). Since the Dirac
delta function has an infinite bandwidth, sampling the impulse
response yields aliasing with unbounded energy. Nevertheless,
the frequency-independent gain can be readily realized in the
discrete-time as a weighted unit impulse δ[n],

G · δ[n], (4)

whose z-transform is G. As will be shown in Sec. III, this
constitutes an ideal band-limitation followed by sampling.

The impulse response of a single one-pole system, described
by the right-sided exponential function in (2), is commonly
discretized in the form of

h[n] = rT · epTn
(
u[n] + d · δ[n]

)
, (5)

where u[n] denotes the discrete-time unit step function,

u[n] =

{
0, n < 0

1, n ≥ 0.
(6)

Note that the sampled value at the jump discontinuity (t = 0)
depends on the correction term d. The z-transform of (5) reads

H (IIM)(z) =
rT

1− epT z−1 + rdT, (7)
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Fig. 2: Digital modeling of a second-order band-pass filter
(fc = 12 kHz, Q = 1√

2
, fs = 48 kHz) using the impulse

invariance method with varying correction term d. Left: spec-
trum of the digital filters. Right: deviation from the analog
spectrum.

which consists of a one-pole IIR filter and a constant. Equa-
tion (7) can be alternatively expressed as

H (IIM)(z) = rT (1 + d)
1− d

1+de
pT z−1

1− epT z−1 , (8)

where a zero appears at z = d
1+de

pT .
The impulse invariance method is commonly introduced

with d = 0 which leads to

H (IIM)(z) =
rT

1− epT z−1 . (9)

It was pointed out in [31, Sec. 7.3] that evaluating (9) for z =
eiωT deviates from the periodic repetition of the continuous-
time spectrum,∑

µ∈Z
Ha (i(ω − µ · ωs)) =

∑
µ∈Z

r

i(ω − µ · ωs)− p
, (10)

where ωs = 2πfs = 2π
T denotes the angular sampling

frequency. In the so-called corrected impulse invariance
method [31–33], this deviation was accounted for and the sam-
pled value of u(t) at t = 0 was set to 1

2 [u(0−) + u(0+)] =
1
2

[34, Ch. 5]. The corresponding correction term is thus d = − 1
2 ,

yielding

H (CIIM)(z) =
rT

2

1 + epT z−1

1− epT z−1 . (11)

It is important to note that the above-mentioned correction
only assures that (9) equals the aliased spectrum (10). In this
regard, the corrected impulse invariance method might not
be suitable if an accurate modeling of the analog filter is of
primary interest. The accuracy of the filter can be improved by
matching the spectrum (7) to its continuous-time counterpart
r

iω−p at a reference frequency ωref [35, Sec. 6.3],

r

iωref − p
= rT

(
1

1− e(p−iωref )T
+ d

)
. (12)

Solving this with respect to d yields

d =
1

T (iωref − p)
− 1

1− e(p−iωref )T
. (13)
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Matching the frequency response at DC (ωref = 0) generally
leads to an improved result throughout a wide frequency
range [17, 18].

In order to examine the influence of the correction term d,
a second-order band-pass filter is considered [36, Eq. (5.25)],

Ha(s) =

1
Q (

s
ωc
)

( sωc
)2 + 1

Q (
s
ωc
) + 1

. (14)

The center frequency is set to ωc = 2πfc with fc = 12 kHz
and the quality factor to Q = 1√

2
. The sampling frequency

is fs = 48 kHz. As depicted in Fig. 2 (indicated by ), this
is a critical example since the peak is just one octave below
the Nyquist frequency fs

2 = 24 kHz and the high-frequency
spectrum decays slowly at a rate of −20 dB/decade. The
magnitude responses of the digital filters |H(eiωT )| are shown
on the left and the spectral deviations |H(eiωT )−Ha(iω)| on
the right. The un-corrected ( ) as well as the corrected ( )
impulse invariance methods exhibit strong deviations, failing
to model the analog filter. The benefit of the DC-matching
scheme ( ) is apparent. Further improvement is achieved by
increasing the sampling rate ( ), where the computational
cost scales with the oversampling factor.

III. BAND LIMITED IMPULSE INVARIANCE METHOD

The aliasing occurring in the impulse invariance method is
attributed to the infinite bandwidth of the prototype analog
filter. In this section, the IIR filter obtained from the conven-
tional method is combined in parallel with an FIR filter (see
Fig. 1) in order to cancel the aliasing. The presented method
is in the same spirit as the approaches introduced in [28].

A. Band Limited Impulse Responses

For an aliasing-free sampling, the bandwidth has to be
limited to |ω| < ωs

2 . An ideally band-limited impulse response
of a one-pole system r

s−p is obtained by the inverse Laplace
transform along the imaginary axis (s = 0+iω) [35, Sec. 6.3],

h(BL)
a (t)︸ ︷︷ ︸
BLEX

=
r

2πi

∫ +iωs
2

−iωs
2

est

s− p ds = r · eptu(t)︸ ︷︷ ︸
Full-band IR

+ r · ε(t)︸ ︷︷ ︸
BLEX

residual

, (15)

where

ε(t) (16)

=

{
ept

2πi

[
E1

(
(iωs

2 + p)t
)
− E1

(
(−iωs

2 + p)t
)]
, t 6= 0

1
2πi

[
ln(iωs

2 − p)− ln(−iωs
2 − p)

]
− u(0), t = 0.

with E1(·) :=
∫∞
z

e−z′

z′ dz′ denoting the exponential integral
function [37, Eq. (5.1.1)]. Equation (15) is derived by exploit-
ing the contour integral r

2πi

∮
C

est

s−pds in the complex plane.
As illustrated in Fig. 3, the contour C is drawn in the right
half-plane for t < 0 and in the left half-plane for t > 0.
Due to the singularity at s = p, the exponential term r · ept
appears for t > 0, which follows from the residue theorem [38,
Ch. 4]. The value at t = 0 is obtained by the indefinite integral
ln(z) =

∫
1
z′ dz

′ [30, Eq. (4.10.1)], where the principal value
(i.e. ={ln(z)} ∈ (−π, π]) is chosen. In the remainder, h(BL)

a (t)

∞−∞

i∞

−i∞
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2

×
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t
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>
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Fig. 3: Integral path of r
2πi

∮
C

est

s−pds on the complex plane
for t < 0 ( ) and t > 0 ( ). The location of the pole p is
indicated by ×. The system is assumed to be stable and thus
<(p) < 0.
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Fig. 4: Impulse response of a one-pole system (p = −2π ·
1000 rad/s, r = 1). Left: BLEX function (15), Center: Full-
band impulse response, Right: BLEX residual. The filled
circles ( ) indicate the sampled values for fs = 48 kHz. The
amplitude scaling T is omitted for the ease of visualization.

will be referred to as the band-limited exponential (BLEX)
function and r · ε(t) as the BLEX residual.

The band-limited impulse invariance method proposed in
this paper is based on (15), which states that an ideal band
limitation can be applied to a prototype filter by superposing
the corresponding BLEX residual onto the full-band impulse
response. This implies that the BLEX residual exhibits an ide-
ally high-pass filtered spectrum which cancels the components
outside the base band (|ω| > ωs

2 ). Fig. 4 shows an exemplary
BLEX function along with the full-band impulse response and
the corresponding BLEX residual.

The band-limited impulse response of the direct part can be
derived in a similar fashion by the inverse Fourier transform,

1

2π

∫ +ωs
2

−ωs
2

G · eiωt dω =
G sin(ωs

2 t)

πt
=
G

T
· sinc(fst), (17)

where sinc(x) := sin(πx)
πx denotes the sinc function.

B. Filter Design

The impulse invariance method (3) is now applied to the
band-limited representations derived in III-A. The decaying
exponential will be realized as an IIR filter whereas the BLEX
residual and the direct throughput as an FIR filter (Fig. 1).

Note from Fig. 4 (right) that the BLEX residual function
is noncausal and has an infinite temporal extent. For practical
usage, it needs to be truncated to a finite length and tapered
by a window function. This inevitably results in a nonideal
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high-pass characteristic of the BLEX residual. The length of
the sampled BLEX residual is denoted by L =M +N where
M and N respectively correspond to the noncausal (n < 0)
and causal (n ≥ 0) parts. In order to build a causal filter, a
pre-delay of τ =M ·T is introduced to the prototype system,
modifying the target transfer function to Ha(iω) e

−iωτ .
The sampling of the BLEX residual reads (cf. (3) and (16))

h(res)[n] = rT ε
(
(n−M)T

)
· v[n], (18)

for n = 0, . . . , L − 1, where v[n] denotes a window func-
tion of the same length. The exponential integral function
E1(·) in (16) can be evaluated efficiently by using a power
series or continued fraction [39, 40]. It is implemented by
scipy.special.exp1 in Python and by expint in Mat-
lab. The impulse response of the delayed IIR filter is (cf. (5))

h(pole)[n] = rT epT (n−M)
(
u[n−M ] + d · δ[n−M ]

)
. (19)

Similar to the conventional impulse invariant method (Sec. II),
the offset of the spectrum at a reference frequency can
be corrected by adjusting d. The DC-matching scheme, for
instance, yields

d = − 1

pT
− 1

1− epT −
L−1∑
n=0

ε((n−M)T ) · v[n], (20)

where the sum corresponds to the DC response (z-transform
with z = ei0 = 1) of the windowed BLEX residual. The direct
throughput is realized as an integer delay with gain G,

h(dir)[n] = T · G
T

sinc (fsT · (n−M)) = G · δ[n−M ], (21)

which follows from (3) and (17). The z-domain expressions
of (18), (19), and (21) read

H (res)(z) =

L−1∑
n=0

h(res)[n] z−n (22)

H (pole)(z) = z−M
( rT

1− epT z−1 + rdT
)

(23)

H (dir)(z) = G · z−M , (24)

respectively. The recursive part rT
1−epT z−1 of H (pole)(z) is re-

alized as an IIR filter, which corresponds to the un-corrected
impulse invariance method (9). Note that (23) and (24) both
include a delay of M samples. The nonrecursive parts are
combined and realized as an FIR filter of length L,

H (FIR)(z) = z−M ·
(
G+ rdT

)
+

L−1∑
n=0

h(res)[n]z−n, (25)

i.e. the windowed BLEX residual H (res)(z), the correction term
rdT · z−M in H (pole)(z), and the direct throughput H (dir)(z).

The presented approach can be readily extended to higher-
order filters (K > 1) described by the partial fraction expan-
sion (1),

H(z) = z−M
(
G+

K−1∑
k=0

rkdkT
)
+

K−1∑
k=0

H (res)
k (z)︸ ︷︷ ︸

H (FIR)(z)

+ z−M
K−1∑
k=0

rkT

1− epkT z−1︸ ︷︷ ︸
H (IIR)

k (z)

, (26)

where the subscript k is re-introduced. Note that the correction
terms, the direct throughput, and the individual BLEX residual
functions are implemented as a single FIR filter H (FIR)(z).
The overall system is a parallel connection of an FIR filter
and equally delayed IIR filters. If necessary, IIR filters with
complex conjugate poles can be combined into second-order
section filters (biquads).

The filter described by (26) bears some similarity to the
state-space model introduced in [27]. If formulated as a ratio-
nal transfer function, the accuracy of both methods depends
on the numerator order. Also, a pre-delay is introduced to
the filters which is associated with the band limitation. The
computational cost of the state-space model and the pro-
posed method respectively depend on the numerical integration
scheme and the evaluation of E1(·). A rigorous comparison
remains beyond the scope of this paper.

It is worth noting that h(res)[n] and h(pole)[n] overlap for n =
M +1, . . . , L. If the aliasing is of considerable amount, those
impulse responses will have large amplitudes with opposing
polarity in this interval, canceling most of the energy from
each other. As Bank and Smith pointed out in [15], such a
filter might have scaling issues in fixed-point processing. A
higher dynamic range can be maintained by moving the early
part of the IIR part to the FIR filter and applying a delay
and attenuation to the IIR filter [41]. The resulting filter will
then have the same structure as the delayed parallel filters
introduced in [15]. This modification is not considered in the
following evaluation (Sec. III-C) which is performed in double
precision.

C. Evaluation

The proposed method is applied to the same second-order
filter (14) considered in Fig. 2. The FIR coefficients are
computed according to (26), where the BLEX residuals are
windowed with a Kaiser window (β = 8.6). The FIR length
is set to odd numbers L = 5, 11, 21, 41. The beginning of
the IIR filters is aligned with the center of the FIR filter
(i.e. M = L−1

2 ). The spectral deviations are evaluated as
|H(eiωT )−Ha(iω)e

−iωτ | by taking the pre-delay into account.
As depicted in Fig. 5, increasing L systematically improves
the performance of the digital filter. The magnitude spectrum
of the FIR part (L = 41) shown in Fig. 5 ( ) is in a
close agreement with the deviation of the un-corrected impulse
invariance method depicted in Fig. 2 (right). This shows that
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Fig. 5: Digital modeling of a second-order band-pass filter
(fc = 12 kHz, Q = 1√

2
, fs = 48 kHz) using the proposed
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the aliasing occurring in the conventional method is canceled
by the BLEX residual functions. Up to 10 kHz, the proposed
method with L = 11 is comparable to the conventional
impulse invariant method with an oversampling by a factor
of 8 (cf. Fig. 2).

IV. CONCLUSION

An accurate yet efficient method is presented for the
discrete-time modeling of continuous-time LTI systems. The
resulting filter has an interpretable structure where the aliasing
occurring in the IIR filters is explicitly reduced by using the
FIR filter. The proposed method can be used not only for
traditional filter design but also for the simulation of physical
systems (e.g. mechanical, electrical, and acoustical) that are
described by rational system functions. The implementations
generating Fig. 2, Fig. 4 and Fig. 5 are available [42].
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