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Abstract—Digital filters design is an important aspect of the
audio processing. They are used in several applications and
the key point is not only the achieved final audio quality but
also their computational complexity. In this context, the use of
Interpolated Finite Impulse Response (IFIR) filters is proposed
for the optimized implementation of a digital crossover network.
In particular, the structure can be viewed as an analysis filter-
bank that can be optimized introducing IFIR filters that allow
to reach very narrow transition bands, with low computational
complexity and linear phase, avoiding ripple between adjacent
bands. Starting from a real-time implementation of the proposed
crossover network, several experiments have been conducted to
prove the effectiveness of the proposed approach in terms of
computational complexity and obtained audio quality.

Index Terms—Interpolated FIR, Digital Filters Design, Digital
Crossover Network

I. INTRODUCTION

Digital audio filters design is an important topic of audio
processing. They have an extensive role in several applications
such as sound synthesis, audio effects, spatial sound, sound en-
hancement and microphone and/or speaker signals processing.
The design of these filters is mainly focused on the perceived
audio quality but another important aspect is the computational
complexity they can achieve since they are usually involved in
real time applications. In this context, a valuable methodology
for audio filters design is the interpolated FIR (IFIR). This
technique firstly developed by Neuvo et al. [1] is capable of
deriving narrow band filters with less complexity relative to
conventional filter design methods [2]. For this characteristic,
it is suitable for those applications in which the input signal
has to be divided in subband without loss of information, using
a structure similar to a filter-bank. An example of application
is the use of IFIR technique to build an uniform filter-bank
for the development of a graphic equalizer, as reported in
[3]. Among all the possible audio applications, also crossover
networks can be viewed as an analysis filter-bank and are
promising candidates for the use of this technique. More in de-
tails, digital crossover filters allow to divide the input signal in
subband to correctly feed each selected loudspeaker avoiding
distortion and drivers damages [4]. An important aspect is that
the split of the original signal should be performed preserving
its quality and integrity not at the expense of the computational
complexity. The requirements for conventional high quality
loudspeaker crossover networks are reported in [5] and they

can be resumed in the following four points: (a) flatness in the
magnitude of the combined outputs, (b) adequate steep cut-off
rates of the individual filters in their stop bands, (c) acceptable
polar response for the combined output, taking into account
the physical separation of the drivers and (d) acceptable phase
response for the combined output, the most desirable charac-
teristic being phase linearity. In the technical literature, both
FIR and IIR implementations have been presented separately.
Their respective strengths mainly depend on FIR and IIR
filter characteristics. FIR realizations can approximate desired
frequency responses arbitrarily well for sufficiently long im-
pulse responses, they are easily designed to achieve linear
phase, and are always stable. However, the number of filter
coefficients required for sharp-cutoff filters is generally quite
large leading to high computational costs and unacceptable
delay. On the other hand, IIR filters are characterized by the
fact that arbitrary magnitude characteristics can readily be
approximated, and designs are generally very efficient (small
number of poles and zeros), especially for sharp-cutoff filters.
In spite of this, no exact linear phase designs are possible
and IIR are not guaranteed to be stable when implemented.
In [6]–[8], FIR realizations have been investigated, in which
the high frequency channel is the complementary of the low
frequency one and the filtering process can be carried out
through frequency domain methods (i.e., overlap and save).
In [9], a technique for designing digital linear-phase FIR
crossover systems, based on the principle of vector space
projections, is proposed. In [10] the crossover network has
been designed exploiting a genetic algorithm, while in [11],
B-spline functions are used to design a multi-way crossover
network. In [12], a procedure to develop an optimal multirate
filter structure based on frequency sampling method in the
weighted least mean squared sense is presented.

Concerning IIR implementations, Bessel and Linkwitz-
Riley filters [13], [14] are often used for crossover network
implementation due to the achievable high roll-off with low
computational complexity. However, many other IIR based
approaches can be found in literature, e.g., a family of
time delay derived crossover is proposed in [15], while a
tree structure for a multi-way crossover is proposed in [16],
improved in [17], successively. In [18], Bessel polynomials
are used to derive a crossover network, while in [19], [20]
a crossover networks derived from an elliptic prototype is
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reported. Finally, a crossover implementation derived from
Bessel filters and Bernstein polynomials is described in [16].
In general, the IIR filters guarantee a low computational
complexity, however they present a non-linear phase.
Starting from the state of the art, considering these scenarios,
a possible solution to obtain an efficient and linear phase
crossover network is presented in this paper exploiting IFIR
filter technique. An innovative implementation of an N-way
digital crossover network is proposed and deeply analyzed to
show its effectiveness in terms of satisfied requirements and
computational complexity in comparison with the state of the
art.

The paper is organized as follows. Sec. II briefly describes
the IFIR filter theory. Sec. III reports the innovative digital
multi-way crossover network. Sec. IV analyzes the obtained
results for the crossover network in terms of time/frequency
analysis and computational complexity. Finally conclusions
are written in Sec. V.

II. IFIR FILTERS DESIGN

The general idea of the IFIR theory is the possibility to
develop FIR filters with very strict specifications, guaranteeing
a reduced computational cost and linear phase. The IFIR filters
are composed of a cascade of two FIR filters [21], as shown in
Fig. 1, and the overall frequency response of the IFIR structure
is computed as follows:

HIFIR(z) = F (zL)G(z). (1)

The first FIR is designed from the model filter F (z) applying
an upsampling by a factor L, while the second FIR G(z) is
called interpolator which is designed to attenuate the unwanted
copies of F (z), due to the interpolation procedure. In fact,
the cut-off frequency of the model filter F (z) is L times
greater than the cut-off frequency of the desired filter, so F (z)
can be designed using a lower order N . The interpolation
procedure consists of adding L − 1 zeros after each sample
of the impulse response of F (z). The upsampling allows to
obtain the desired cut-off frequency and generates unwanted
copies, which are deleted by the interpolator G(z). In this
paper, for the sake of simplicity, the filters are designed with
the windowing method using the Kaiser window with a shape
parameter β = 10 [22], but other design techniques can be
found in the literature [23]–[25]. The design of the filter F (z)
is achieved considering a cut-off frequency of fF

c = Lfc,
where fc is the cut-off frequency of the desired low-pass filter
and L is the interpolation factor. In the proposed system, the
order M of the filter F (z) must be an even value, because the
filter delay, that is M/2 must be an integer value to allow the
time synchronization of the crossover outputs. For this reason,

F(zL) G(z)x(n) y(n)

HIFIR(z)

Fig. 1. Cascade of two FIR filters which represents the IFIR implementation.
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Fig. 2. Design of the first band of the proposed crossover network based on
IFIR filters. The filter F (z) is designed with the Kaiser window considering
a shape factor of β = 10, a cut-off frequency of fc = 120 Hz, a stop-band
attenuation of A = 100 dB, an interpolation factor of L = 14 and a filter
order of M = 92. Fig. (i) shows the model filter and the interpolated filter
and Fig. (ii) shows the resulting IFIR filter.

M is chosen as the even number closest to the optimum order
Mopt, as follows:

M = 2Mopt − 2

⌊
Mopt

2

⌋
, (2)

and Mopt is calculated by the following Eq. given by [22]:

Mopt =

⌊
A− 8

2.285∆ω

⌉
, (3)

where the brackets ⌊·⌉ denote the rounding to the closest
integer value, A is the stop-band attenuation and ∆ω is the
width of the transition band, that is imposed to be twice the
cut-off frequency of the model filter fF

c , e.g.,

∆ω =
4πfF

c

Fs
=

4πLfc
Fs

, (4)

where Fs is the sampling frequency. To further reduce the
computational complexity and the memory allocation, in this
paper the filter G(z) is imposed equal to the filter F (z), e.g.,

G(z) = F (z). (5)

Eq. (5) can be applied when the filter F (z) is designed in order
to eliminate the images of the interpolated version F (zL).
Empirical tests proved that this characteristic is achieved when
the equation 2Lfc = Fs/L − 2fc is satisfied, that means
computing the interpolation factor as

L =

⌊
−fc +

√
f2
c + 2fcFs

2fc

⌉
. (6)
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Fig. 3. Scheme of the proposed N-way crossover network. H1(z), H2(z),
..., HN−1(z) are the IFIR basis low-pass filters with cut-off frequencies of
fc1 , fc2 , ..., fcN−1 , respectively.

This method allows to obtain a reduction in the number of
multipliers and additions needed in the implementation of FIR
filtering. In fact, the number of taps of the cascade of the two
filters is less than a standard implementation of FIR filter with
the same specifications. The number of multiplications Σ of
the total proposed IFIR filtering is computed as follows:

Σ = 2M + 2, (7)

where M is the order of F (z). Fig. 2 shows the design of the
low-pass IFIR filter. In this case, the cut-off frequency is set to
fc = 120 Hz, the stop-band attenuation is A = 100 dB and the
sampling frequency is Fs = 48 kHz. Following Eq.s (6)-(4),
the resulting interpolation factor is L = 14 and the filter order
is M = 92, corresponding to a filter length of 93 samples
(obtained as M + 1). An usual FIR filter designed using the
Kaiser window with the same specifications would require a
length of 1283 samples, so it demands for a much higher
computational cost than the IFIR. Although the reduction in
computation, the delay D introduced by the IFIR filtering is
comparable to one introduced by the FIR and is computed as
follows:

D =
ML+M

2
. (8)

Therefore, in the case of Fig. 2, the delay introduced by the
filter is D = 690 samples, or 14 ms.

III. IFIR MULTI-WAY CROSSOVER DESIGN

In the proposed approach IFIR filters are applied to the
realization of a multi-way crossover filter. Fig. 3 shows the
scheme of the proposed crossover. Considering N ways, the
cut-off frequencies of the N bands of the crossover are fc1 , fc2 ,
..., fcN−1

, where fc1 is the cut-off frequency of the first low-
pass filter and fcN−1

is the cut-off frequency of the last high-
pass filter. Starting from N − 1 basis low-pass filters H1(z),
H2(z), ..., HN−1(z) with cut-off frequencies of fc1 , fc2 , ...,
fcN−1

, respectively, the combination of these low-pass filters
and their high-pass complementary filters allows to obtain the
N outputs of the crossover network. The basis low-pass filters
Hi(z) are IFIR filters obtained, as shown in Fig. 4, as follows:

Hi(z) = Fi(z
Li)Fi(z), (9)

≡ xi+1 xiHi(z) Fi(z
Li) Fi(z)

xi+1 xi

Fig. 4. Design of the i-th basis low-pass filter using IFIR method, with
i = 1, ..., N − 1.

where Fi(z) is the i-th model filter and is designed following
the specifications discussed in Sec. II and Eq.s (6)-(4), with
i = 1, 2, ..., N − 1. In the case of Li = 1 the Eq. (9) is not
applied and the filter Hi(z) is designed as a single FIR filter,
so it is equal to the filter Fi(z), e.g., Hi(z) = Fi(z). The
respective high-pass filter HH

i (z) with cut-off frequency fci is
obtained as the complementary filter of Hi(z) as follows:

HH
i (z) = z−Di −Hi(z), (10)

where Di is the delay calculated following Eq. (8). The use
of complementary filters allows to reduce the computational
complexity and to guarantee a flat magnitude response of the
combined outputs, verifying the requirement (a). Taking into
account Fig. 3, the kth output of the crossover network Yk(z)
is computed as follows:

Yk(z) = [Xk(z)z
−Dk−1 −Xk−1(z)]z

−∆k , (11)

where Xk−1 is obtained as follows:

Xk−1 = X(z)

N−1∏
i=k−1

Hi(z), (12)

with k = 2, ..., N and considering XN (z) = X(z). The
synchronization delay ∆k is applied starting from the third
band and is defined as follows:

∆k =

k−2∑
i=1

Di, (13)

with k = 3, ..., N and Di is the delay introduced by the i-th
basis filter and it is calculated following Eq. (8). The output of
the first band Y1(z) is simply equal to X1(z) that is obtained
by Eq. (12). Finally, the total delay of the crossover network
τ is computed as follows:

τ =

N−1∑
i=1

Di. (14)

The computational complexity is given by the number of
operations per sample. The number of multiplications of the
proposed crossover network is computed as follows:

n◦ Mul =
N−1∑
i=1

ciMi + ci, (15)

and the number of additions is calculated as follows:

n◦ Sum =

N−1∑
i=1

ciMi + 1, (16)

where Mi is the order of the i-th model filter Fi(z), N is
the number of ways of the crossover and ci is a parameter
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that depends on the value of the i-th interpolation factor Li

as follows:

ci =

{
2, if Li > 1,

1, if Li = 1.
(17)

IV. EXPERIMENTAL RESULTS

The proposed crossover has been tested considering a 4-
way configuration with the following cut-off frequencies:
fc1 = 120 Hz, fc2 = 1000 Hz and fc3 = 8000 Hz and
a sampling frequency of Fs = 48 kHz. In this case, three
basis low-pass filters H1(z), H2(z) and H3(z) have been
designed using the IFIR technique, as explained in Sec. II,
obtaining the following interpolation factors: L1 = 14, L2 = 4
and L3 = 1, and the following filters orders: M1 = 92,
M2 = 38 and M3 = 20. The evaluation has been carried out
examining the four requirements listed in Sec. I, comparing
the proposed crossover with the Linkwitz-Riley state-of-the-art
approach, with the time filtering of equivalent FIR filters and
with the FFT implementation. The Linkwitz-Riley crossover
network [13] is obtained considering 4th order filters. The
FIR crossover is obtained implementing the same scheme of
Fig. 3, but the basis filters Hi(z) are designed as normal
FIR filters with the Kaiser window with a shape parameter
of β = 10 and the following orders: M1 = 1282, M2 = 154,
M3 = 20. The FFT method is obtained by calculating the
frequency response of each band of the FIR crossover and
applying the Overlap and Save algorithm considering a FFT
length of 1024 samples. Tab. I shows the results obtained by
the experimental tests. In the table, the checkmark means the
verification of the considered requirement, while the distortion
index (DI) quantifies the level of distortion and it is calculated
as follows:

DI =
max |T (ejω)|dB +min |T (ejω)|dB

2
, (18)

where T (z) is the sum of all the bands frequency responses
of the crossover. The DI should take values close to 0 dB to
have a flat response. The Linkwitz-Riley crossover guarantees
only the requirements (b) and (c). In particular, regarding the
magnitude flatness, Fig. 5(i) shows the magnitude frequency
response of the combined outputs comparing Linkwitz-Riley
with the proposed system, confirming the results obtained
for the distortion index. In fact, Linkwitz-Riley presents a
distortion of 0.5 dB, while the proposed crossover shows a
completely flat response. Fig. 5(ii) shows the comparison in
terms of magnitude frequency response of the four bands. In
the proposed approach, the stop-bands at the low frequencies
have a smaller attenuation than the Linkwitz-Riley crossover,
while the high frequencies are more attenuated. However, a
good suppression of the low frequencies that reach the last
driver (generally a tweeter) and could damage the loudspeaker
is obtained. For this reason, the requirement (b) on the cut-off
rate is verified by both the techniques. Fig. 6 shows the polar
diagrams corresponding to the considered cut-off frequencies
of the 4-way crossover. The figure is obtained taking into
account the equations reported in [26] and compares the

TABLE I
COMPARISON BETWEEN CROSSOVERS, EVALUATING THE REQUIREMENTS,
THE DISTORTION INDEX, THE LATENCY AND THE COMPUTATIONAL COST
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(a) (b) (c) (d)

Linkwitz-Riley ✓ ✓ 0.5 dB 4 ms 32 36 68

FIR ✓ ✓ ✓ ✓ 0 dB 15 ms 1459 1459 2918

FFT ✓ ✓ ✓ ✓ 0 dB 21 ms 360 244 604

Proposed ✓ ✓ ✓ ✓ 0 dB 16 ms 283 285 568

proposed IFIR crossover with the Linkwitz-Riley method.
Both of them show an acceptable polar response, verifying the
requirement (c). Fig. 7 shows the combined phase response of
the total 4-way crossover, comparing Linkwitz-Riley method
with the proposed one. As expected, the proposed crossover
presents a linear phase and this means a symmetric time
response, satisfying the requirement (d). Regarding the latency
and computational cost, the Linkwitz-Riley method presents
the lowest computational cost and the lowest latency, as
expected. All the other FIR methods are based on the proposed
system changing the implementation, so they verify all the four
requirements but they differ in computational cost and latency.
The FIR method is the most expensive in terms of number
of operations reaching a total of 2918 operations per sample,
while the FFT implementation shows the highest latency (21
ms). The proposed method has a latency of 16 ms similar
to the FIR method and requires a total of 568 operations per
sample (285 multiplications and 283 additions), that is smaller
than both the FIR method and the FFT implementation.

V. CONCLUSIONS

In this paper, the IFIR filters are applied for the im-
plementation of a digital multi-way crossover network. The
experimental results have demonstrated the great performances
of proposed approach in terms of flatness of the magnitude
response of the combined outputs, adequate steep cut-off rates
of the filters, acceptable polar response and linear phase re-
sponse, verifying all the requirements needed for a high quality
loudspeaker crossover network. Moreover, an analysis of the
computational complexity has been carried out, demonstrating
a low computational cost in comparison with other linear-
phase implementations.
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[24] L. San José Revuelta and J. Arribas, “A new approach for the design
of digital frequency selective fir filters using an fpa-based algorithm,”
Expert Systems with Applications, vol. 106, 03 2018.

[25] J. Chen and Z. Cai, “A new class of explicit interpolatory splines
and related measurement estimation,” IEEE Transactions on Signal
Processing, vol. 68, pp. 2799–2813, 2020.

[26] R. G. Greenfield, “Polar response errors in digital crossover alignments,”
in 100th Convention of the Audio Engineering Society, May 1996, paper
4215.

218


