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Abstract—We propose a method that effectively generates a
note-level transcription from a guitar sound signal. In recent
years, there have been many successful guitar transcription sys-
tems. However, most of them generate a frame-level transcription
rather than a note-level transcription. Furthermore, it is usually
difficult to effectively model long-term characteristics. To address
these problems, we propose a novel model architecture using an
attention mechanism along with a convolutional neural network
(CNN). Our model is capable of modeling both short-term and
long-term characteristics of a guitar sound signal and a corre-
sponding guitar transcription. A beat-informed quantization is
implemented to generate a note-level transcription. Furthermore,
multi-task learning with frame-level and note-level estimations
is also implemented to achieve robust training. We conducted
experimental evaluations on our method using a publicly avail-
able acoustic guitar dataset. We confirmed that 1) the proposed
method significantly outperforms the conventional method based
on a CNN in frame-level estimation performance and that 2) the
proposed method can also generate note-level guitar transcription
while preserving high estimation performance.

Index Terms—automatic guitar transcription, note-level, atten-
tion mechanism, multi-task learning

I. INTRODUCTION

The guitar is a popular instrument for both professional
musicians and hobbyists. However, when a guitar player
wants to play a tune performed by another guitarist, unless
there is already a music score, a player has to transcribe
the correct pitch and fingering by either listening to it or
watching a performance video and assume by looking at their
finger position. This process of manually transcribing a guitar
performance is a non-trivial task even for skilled musicians
and can be time-consuming and inaccurate [1].

To address this, there have been many studies on automatic
guitar transcription [1]–[6]. Automatic guitar transcription is
the task of generating a symbolic transcription of the music
from an audio recording. Since guitar is a polyphonic instru-
ment, the transcription of a guitar performance is relatively
difficult compared with that of a monophonic instrument.
Moreover, since a guitar has six strings and their ranges of
possible pitches overlap, it is difficult to predict exactly which
string is used when a note is played. This ambiguity is a
characteristic of multistring instruments such as the guitar. For
this reason, a tablature score, as shown in Fig. 1 (c), which
is a type of music score that contains the timing, string, and

Fig. 1: Examples of (a) spectrogram of a guitar sound, (b) standard
music score, (c) tablature score, and (d) frame-level transcrip-
tion.

fret positioning of each note, has been a popular choice for
annotating a guitar performance.

Wiggins and Kim proposed a convolutional neural network
(CNN)-based system called TabCNN [2], which is capable
of directly estimating a frame-level1 tablature of a guitar
performance, i.e., generating Fig. 1 (d) from Fig. 1 (a).
Although TabCNN is capable of generating a tablature tran-
scription, it has the limitations of not being able to model long-
term characteristics of a guitar performance and the output
consisting of a frame-level transcription instead of a note-
level transcription. Since a music score that can directly be
read by humans, such as in Fig. 1 (b) and Fig. 1 (c), consists
of annotation in musical notes rather than frames, note-level
annotation is more desirable in terms of generating a human-
readable music score.

To overcome the limitations of conventional methods, we
propose a novel method2 that generates a note-level tablature
from a spectrogram of a guitar sound signal and a given beats-
per-minute (BPM) information. Note that our method does not

1Term used to describe that the time resolution is in units of frames.
2Source code available: https://github.com/KimSehun725/Tab-estimator
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detect onset. Therefore, the output is a saliency representation
of a tablature. Our contributions are summarized as follows.

• We introduce an attention mechanism, which is demon-
strated to be effective at modeling long-term character-
istics without making the size of a network very large
[7].

• We implement a beat-informed quantization, which en-
ables our model to generate a note-level transcription.

• We use both frame-level and note-level outputs to perform
multi-task learning to achieve robust training.

• Experimental evaluation results demonstrate that our pro-
posed method not only outperforms a state-of-the-art
guitar transcription system in frame-level estimation, but
is also capable of generating a note-level transcription
while preserving high estimation performance.

II. RELATED WORK

A. Automatic tablature estimation

In the goal of developing an automatic tablature estima-
tion system, several methods mainly based on audio signal
processing have been proposed [6]. Also, there have been
several approaches that use probabilistic models [5], [8]. In
[5], two-step approach is used. The first step is to estimate
the pitch of each note being played. The second step is to
estimate the finger positioning by combining the estimated
pitch information and the physical limitations of the possible
fingering to estimate the best fingering position. Since these
methods process information sequentially, information from
downstream components cannot inform upstream components.

In an attempt to overcome the limitations of these multi-step
approach, the second approach directly estimates a tablature
from an audio signal using a deep neural network (DNN).
Inspired by the CNN-based polyphonic music transcription
model [9], Wiggins et al. proposed a CNN-based architecture
that uses constant-Q transform (CQT) [10] as an input acoustic
feature to estimate the frame-level tablature and named it
TabCNN [2].

B. Note-level music transcription

Shibata et al. presented an automatic piano transcription
system that converted polyphonic audio recordings into mu-
sical scores [11]. They used CNNs to generate a MIDI-like
sequence and used the metrical hidden Markov model (HMM)
for rhythm quantization. Hiramatsu et al. proposed a bidi-
rectional long-short term memory (BiLSTM)-based network
that effectively converted a MIDI-like note sequence into a
note-based annotation [12]. Cogliati et al. proposed a method
of converting a MIDI file to a musical score by using a
combination of a rule-based and probabilistic models [13].

Although these methods can be applied to a guitar tran-
scription system, they require a multistep approach, making
it difficult to jointly optimize all models through the entire
process.

Fig. 2: Overview of our proposed model architecture.

Fig. 3: Network structure of the convolution stack used in our
proposed model.

III. PROPOSED METHOD

The structure of our model is generally inspired by TabCNN
[2] and the Conformer block architecture [14] with the addition
of a beat-informed quantization layer. An overview of our
proposed model architecture is shown in Fig. 2. The proposed
network contains four main parts: a convolution stack, self-
attention blocks, a beat-informed quantization layer, and two
output layers. The convolution stack is used as a local feature
extractor and the self-attention block is used for seeking
global interactions based on the features extracted from the
convolution stack. Beat-informed quantization is used to effec-
tively quantize latent features corresponding to the given BPM
information without sacrificing much information. Lastly, two
output layers each generate frame-level and note-level outputs,
and we use these two outputs to implement multi-task learning.

A. Convolution stack

The convolution stack consists of several 2D convolution
layers, max pooling layers, dropout layers, and a linear layer.
The structure of the convolution stack is shown in Fig.
3. First, input features go through two convolution blocks,
which consist of sequential operations of 2D convolution,
batch normalization, and the Rectified Linear Unit (ReLU)
activation function. Next, the latent features generated from
two sequential convolution blocks are subsampled by a max
pooling layer. Then, another convolution block and a max
pooling layer further refine the latent features extracted from
the previous steps. Lastly, a linear layer is added as an output
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layer to reduce the dimension. In addition, three dropout layers
are placed after the max pooling layers and the linear layer to
prevent overfitting.

B. Self-attention block

For the self-attention blocks, we employ Conformer [14],
which is a convolution-augmented Transformer [15] archi-
tecture. The Conformer block consists of a dot-product self-
attention module with relative positional encoding [16], fol-
lowed by a convolution module that contains pointwise and
depthwise convolution operations. In addition, both modules
have a residual connection from the previous step. The self-
attention and convolution modules are sandwiched by two
feedforward modules with a half-step residual connection.

C. Beat-informed quantization

Beat-informed quantization is a non-trainable operation. Its
goal is to quantize a frame-level sequence into a note-level
sequence, i.e., quantize in time with the BPM scaling factor. In
this operation, the quantization ratio K ∈ R can be calculated
as

K =
60 · fs

q/4 ·B · h
, (1)

where fs denotes the sampling rate, q denotes the tatum, i.e.,
the minimum quantization unit in the qth note, B denotes the
BPM, and h denotes the hop length.

Simple ways to approximately quantize with a ratio of a real
number are to perform integer ratio interpolation followed by
integer ratio decimation, and to perform a simple subsampling
process that reduces the data size by selecting a subset of the
original data [17]. However, these methods discard information
between samples when K > 1. Furthermore, as K increases,
more information is discarded.

In an attempt to preserve as much information as possible
when performing beat-informed quantization, we propose a
method of beat-informed quantization. The method is ex-
pressed as

X̂(tn) =
1

K
[(⌈Ktn⌉ −Ktn)X(⌊Ktn⌋)

+

⌊K(tn+1)⌋−1∑
tf=⌈Ktn⌉

X(tf )

+ {K(tn + 1)− ⌊K(tn + 1)⌋} X(⌊K(tn + 1)⌋)] ,

(2)

where X denotes input latent features generated from the self-
attention blocks with a framewise sequence length, X̂ denotes
an output with a notewise sequence length, and tf and tn
denote framewise and notewise times, respectively.

D. Multi-task learning

In order to obtain probability distribution over each string,
we use a linear layer with the string-wise softmax function [2]
for the output layers of our system.

We train our model by multi-task learning with frame-level
and note-level estimations. In addition, we employ the guided
attention loss [18] to make the training process more stable

and converge faster. The loss function of our system Ltotal is
espressed as

Ltotal = Lframe + Lnote + Latt, (3)

where Lframe denotes the frame loss, Lnote denotes the note
loss, and Latt denotes the guided attention loss.

The frame and note losses of our model can be respectively
expressed as

Lframe = − 1

6 · 21 · T

6∑
s=1

21∑
f=1

T∑
t=1

{ys,f,t log (ŷs,f,t)

+ (1− ys,f,t) log (1− ŷs,f,t)} ,

(4)

Lnote = − 1

6 · 21 ·N

6∑
s=1

21∑
f=1

N∑
n=1

{zs,f,n log (ẑs,f,n)

+ (1− zs,f,n) log (1− ẑs,f,n)} ,

(5)

where y denotes the frame-level ground truth label, ŷ denotes
the frame-level prediction from the model, z denotes the note-
level ground truth label, ẑ denotes the note-level prediction
from the model, s denotes the string number, f denotes the
fret classes, and T and N denote the framewise and notewise
lengths, respectively.

The guided attention loss can be expressed as

Latt(A) =
α

T 2

T∑
t1=1

T∑
t2=1

A(t1, t2)[1−exp{−(t1/T − t2/T )
2

2g2
}],

(6)
where A denotes the attention weight matrix and α denotes
the scaling coefficient. In addition, t1 and t2 denote the source
and target frames, respectively, and T denotes the total number
of frames. Lastly, g is a hyperparameter for controlling the
strength of the effect of the guided attention.

IV. EXPERIMENTAL EVALUATION

A. Experimental conditions

As our training and testing dataset, we used GuitarSet [19],
which contains acoustic guitar recordings and corresponding
annotations. Since GuitarSet contains performances of six
different guitar players, we used a sixfold cross-validation
method with a rotating test player to evaluate our model.
Furthermore, we set the training/validation ratio to 0.9.

The training conditions of the baseline model (TabCNN)
and our proposed model are shown in Table I. For the baseline
model, we followed the original training conditions proposed
in [2]. When training our proposed model, instead of using
a fixed learning rate in the entire training process, we used a
step decay learning rate (Step LR) scheme. In our experiment,
we set 0.005 as the initial learning rate and reduced it by
half after every 32 epochs. For the optimizer, we employed
Rectified Adam (RAdam) [20]. All network parameters were
initialized using Xavier’s initializer [21].

We implemented the self-attention block using the ESPNet2
framework [22], and we used one layer of self-attention block
and one attention head for the self-attention block, and we set
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TABLE I: Comparison of training conditions.

TabCNN Proposed
Training epochs 8 192
Minibatch size 128 32
Optimizer Adadelta RAdam
Learning rate 1.0 Step LR
Number of CQT bins 192 192
Bins per octave 24 24
Hop length 512 512
Downsampling rate 22050Hz 22050Hz

TABLE II: Frame-level tablature estimation metrics for our pro-
posed system, compared with a baseline system. For all
metrics, we report the mean and standard deviation over
the entire dataset.

Precision Recall F1 TDR
TabCNN
(frame-level)

0.809 ±
0.029

0.696 ±
0.061

0.748 ±
0.047

0.899 ±
0.033

Proposed
(frame-level)

0.789 ±
0.027

0.780 ±
0.040

0.781 ±
0.029

0.918 ±
0.020

Proposed
(note-level)

0.781 ±
0.031

0.777 ±
0.039

0.775 ±
0.029

0.919 ±
0.021

g = 0.4, α = 1 for the guided attention loss. In addition, the
dimension of the attention mechanism was set to 64. Finally,
we set the tatum q to the 16th note.

For the metrics to evaluate our system, we used precision,
recall, F1 score, and tablature disambiguation rate (TDR) [2].
TDR is computed by dividing the total number of correctly
identified string-fret combinations by the total number of
correctly identified pitches. TDR measures how frequently
pitches that are correctly identified are assigned to the correct
fingering positions. The equation for calculating TDR is

τ =
eT (Zgt ◦ Zpred)e

eT (Ygt ◦Ypred)e
, (7)

where τ denotes TDR, e denotes a vector of all ones, Z
denotes the tablature, and Y denotes the pitches. Subscripts
gt and pred denote the ground truth and the prediction from
the guitar transcription model, respectively.

B. Results

We compare the baseline model with our proposed model
in Table II. Regarding frame-level tablature estimation, our
proposed model outperforms the baseline model for the recall,
F1 score, and TDR. The baseline model shows slightly better
results only for precision. In addition, the proposed method
also achieves high performance in note-level estimation while
limiting the performance degradation in precision, recall, and
F1 score to less than 1% compared with those in the frame-
level estimation. Note that the TDR of 0.918 indicates that
over 91% of correctly identified pitches are assigned to the
correct fingering.

A sample output of our system is shown in Fig. 4. Note that
by looking at the attention map, we can see that the attention
mechanism not only attends to the exact corresponding time
frame when generating the output, it also attends to frames
around it in a rectangular region roughly corresponding to
each note or chord.

Fig. 4: Sample set of (top) ground truth label, (middle) estimation
result from our system, and (bottom) corresponding attention
map. The same color represents the same pitch name.

By analyzing the estimation result, we found that the most
common type of error was the insertion or deletion of a note
in a higher octave. This type of error was also reported in [2].
This is likely due to the fact that a sound of a guitar often
contains a strong harmonic overtone and the network fails to
detect the correct string by its timbre.

C. Ablation study

We evaluated the effects of various elements of our system
via an ablation study. To quantitatively analyze the effect of
each element of our proposed method, we used Cohen’s d for
the F1 score of the note-level tablature estimation as an effect
size to evaluate the effectiveness of each element. Cohen’s d
is computed as

d =
|x̄1 − x̄2|√
(σ2

1 + σ2
2)/2

, (8)

where x̄1 and x̄2 denote sample means, and σ2
1 and σ2

2 denote
unbiased variances. It has been suggested that d = 0.2 rep-
resents a ‘small’ effect size, 0.5 represents a ‘medium’ effect
size, and 0.8 represents a ‘large’ effect size [23]. We compared
our proposed model (a) with the vanilla Transformer encoder
instead of Conformer, (b) without the attention mechanism,
(c) with the selection-based quantization method instead of
the proposed beat-informed quantization method, (d) with the
mel-spectrogram as the input feature instead of the CQT,
(e) without the guided attention, and (f) without multi-task
learning (Ltotal = Lnote + Latt).

The result of the ablation study for our proposed model
architecture is shown in Table III. Additionally, the effect
size of each component is shown in Table IV. The result
of the ablation study shows that (b), (c), and (d) have a
large effect, (a) has a medium to large effect, (e) has a
small effect on the performance of the model, and (f) multi-
task learning is essential for training our model. This result
demonstrates the effectiveness of 1) the attention mechanism,
2) the convolutional augmentation on the attention mechanism,
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TABLE III: Ablation study on note-level tablature estimation for our
proposed model. For all metrics, we report the mean
and standard deviation over the entire dataset.

Precision Recall F1 TDR

Proposed 0.781 ±
0.031

0.777 ±
0.039

0.775 ±
0.029

0.919 ±
0.021

(a) With vanilla
Transformer encoder

0.768 ±
0.035

0.748 ±
0.055

0.753 ±
0.038

0.905 ±
0.029

(b) Without attention
mechanism

0.754 ±
0.033

0.703 ±
0.039

0.724 ±
0.032

0.880 ±
0.026

(c) With selection-based
quantization method

0.692 ±
0.031

0.617 ±
0.032

0.646 ±
0.024

0.921 ±
0.018

(d) With mel-spectrogram
as input feature

0.726 ±
0.023

0.696 ±
0.056

0.706 ±
0.038

0.880 ±
0.030

(e) Without guided
attention

0.777 ±
0.026

0.776 ±
0.046

0.772 ±
0.032

0.917 ±
0.023

(f) Without multi-task
learning Failed to train

TABLE IV: Effect size of (a)-(e) regarding F1 score with reference
to our proposed model.

Effect size
(a) With vanilla Transformer encoder 0.65
(b) Without attention mechanism 1.67
(c) With selection-based quantization method 4.85
(d) With mel-spectrogram as input feature 2.04
(e) Without guided attention 0.10

3) our proposed beat-informed quantization method, and 4)
using CQT as an input feature instead of the mel-spectrogram.
Although the guided attention had little impact on the perfor-
mance of the model, it helped make the training procedure
more stable and converge faster.

V. CONCLUSION

In this paper, we have proposed a novel automatic guitar
transcription method that uses an attention mechanism, beat-
informed quantization, and a multi-task learning scheme. Our
method not only significantly outperforms the conventional
method of generating a frame-level transcription, but is also
capable of generating a note-level transcription while preserv-
ing high estimation performance. The results of experimental
evaluations have shown the effectiveness of 1) the atten-
tion mechanism, 2) our proposed beat-informed quantization
method, and 3) multi-task learning with frame-level and note-
level estimations.
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