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Abstract—In this paper we introduce StyleWaveGAN, a style-
based drum sound generator that is a variation of StyleGAN, a
state-of-the-art image generator. By conditioning StyleWaveGAN
on the type of drum, we are able to synthesize waveforms faster
than real-time on a GPU directly in CD quality up to a duration
of 1.5s while retaining some control over the generation. We also
introduce an alternative to the progressive growing of GANs and
experimented on the effect of dataset balancing for generative
tasks. The experiments are carried out on an augmented subset
of a publicly available dataset comprised of different drums
and cymbals. We evaluate against two recent drum genera-
tors, WaveGAN and NeuroDrum, demonstrating significantly
improved generation quality using two quality measures: first
the Frechet Audio Distance and second a perceptual test.

Index Terms—Percussive Sound Synthesis, Generative Models,
Creative Interfaces

I. INTRODUCTION

Drum machines are musical devices creating percussion
sounds using analog or digital signal processing [1], [2].
The characteristic sound of this synthesis process contributed
to their use in the ’80s and their appreciation nowadays.
However, these drum machines did not provide an extensive
set of controls over the generation.

Following the success of deep learning, several generative
processes for percussive sounds have been proposed in the
recent years, and two approaches retained our attention. [3]
used a generative adversarial network (GAN) for waveform
generation with a conditioning on the type of drum, generating
0.3s at 44100Hz. There is also [4], where a GAN was trained
to generate STFT of drum sounds, allowing them to generate
Is at 16kHz. Both of them used the progressive growing of
GANSs [5].

In this paper, we build upon the same idea of condi-
tional synthesis using discrete and continuous controls, with
time-domain generation like [3] with a style-based approach
(SGAN) [6], [7]. We conduct our experiments on an aug-
mented version of the ENST-Drums [8] dataset, containing
kick, snare, toms and hi-hats and comprising about 120k
samples amounting to 100 hours of recordings. To evaluate
the quality of the model on this dataset, we are using the
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Fréchet Audio Distance (FAD) [9], in an attempt to obtain a
reference-free automatic evaluation of the generated samples.
We also performed perceptual tests on the generated samples
to measure how the generated samples are perceived by human
listeners.

All in all, our goal is to create an algorithm for drum sound
synthesis suitable for professional music production. In other
words, we expect good output quality, real-time generation
and relevant controls. We will especially compare to a few
networks whose performances are summarized in table I.
WaveGAN [10] is the first use of a generative adversarial
network (GAN) for temporal generation of audio and Neu-
roDrum [11] was the first to introduce perceptual features as
part of the control for drum synthesis. DrumGAN [4] uses
a GAN with perceptual features as part of the control for
drum synthesis and finally [3] uses a GAN for drum sound
synthesis at higher sample rate but with shorter duration than
the previously mentioned networks.

Reference Sample Rate | Duration
WaveGAN [10] 16kHz 1.1s
NeuroDrum [11] 16kHz 1s
DrumGAN [4] 16kHz 1.1s

Drysdale et al. [3] 44.1kHz 0.4s
Ours 44.1kHz 1.5s
TABLE I

COMPARISON OF STATE OF THE ART NEURAL DRUM SYNTHESIZERS

II. MODEL
A. Generative Adversarial Networks and StyleGAN

Generative Adversarial Networks (GAN) are a family of
training procedures in which a generative model (the genera-
tor) competes against a discriminative adversary (the discrim-
inator) that learns to distinguish whether a sample is real or
fake [12].

Instead of using a vanilla GAN, we are using an evolution
called StyleGAN [6], [7]. StyleGAN attempts to mitigate the
entangled representation when using noise as latent and input
of the generator. The key idea here is to use a style encoding,
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a vector which is obtained through a mapping network and is
then used to control (through an affine transform) every layer
of a synthesis network.

B. Proposed architecture

Since StyleGAN was originally used for high-quality image
generation, we have to modify it for direct waveform genera-
tion. In particular, we transform 2D convolution (3 x 3) into
1D causal convolutions (1 x 9) [13], the upsampling is done
with an averaging filter before each convolution block in the
synthesis network, the mapping networks has 4 layers instead
of 8 and the loss function is WGAN-LP [14] (see figure 1).

We use the same number of filters, with respect to the
depth, as StyleGAN2 [7]. Just like StyleGAN2 , the synthesis
network uses input/output skips and the discriminator is a
residual network.
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Fig. 1. StyleWaveGAN

In this work we follow [3], [11] using a temporal signal
representation. Informal perceptual evaluations performed in
the initial phase of this study supported our idea that the
temporal representation produces better audio quality than
spectral representation : we suppose it is because of the high
amount of noise and the importance of the transient in the
drum sounds.

C. Noise addition layers

We modified the noise addition layers of StyleGAN to make
them style-dependant. We also add noise shaping (with a linear
fade out) to avoid noisy tails. Having controlled noise addition
is useful since some classes need more noise than other to get
a good quality synthesis.

D. Output envelopes

One of the main complaints during informal perceptual tests
for StyleWaveGAN was the generated sounds have an audible
noisy tail which makes them easily identifiable. To avoid this
pitfall, we added envelopes after the output of the network.

These envelopes where generated using the training dataset,
one per type of drum. For each sample of one given type, the
final envelope is the filtered mean of the analytical part of

the Hilbert transform of these normalized samples. A small
fade out is applied to avoid audible clicks at the end of the
generated sounds.
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Fig. 2. Generated envelopes from the training dataset

E. Controlling the network

To control the network, we use 5 labels describing the
type of drum (kick, snare, toms, closed hi-hat and open hi-
hat). The labels are fed into an embedding layer which is
then concatenated to the latent z (c.f figure 1) and fed to
the mapping network. These labels are concatenated after the
mapping network too. This is done to allow the user to control
the synthesis network without the necessity of a mapping
network.

In our experiments, we are using 5 labels. These labels are
added to the network with a one-hot vector. We expect to
have a better disentanglement between the class label during
the style encoding by using this method.

F. AutoFade

While Progressive Growing of GANs [5] is used in recent
papers [3], [4], we have to note it was dropped by its creators
[7]. As a compromise, we introduce AutoFade. It is a ResNet
architecture with a convolution path and a bypass where a
learned parameter is used to fade more or less of one path.
Rather than fixing a value like ResNet, we let the network
choose the best value as part of the training process, without
the need of training it block by block. If = and y represents
the two different branches, we have:

sin(a)z + cos(a)y (1)

« is independent of x or y. It makes this structure an
intermediate between ResNet and Highway Networks. By
using trigonometric function in equation (1), we guarantee
the conservation of the standard deviation, if both inputs have
equal variance. Informal listening tests showed that AutoFade
was of great use in the discriminator, but did not bring any
improvement when used in the generator. The Autofade feature
will therefore be evaluated in the following sections, only as
part of the discriminator.
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III. EXPERIMENTAL SETUP

A. Dataset

We are using a subset of ENST-Drums [8], comprised of
350 samples of close miking of kicks, snares, toms and hi-
hat. Since 350 elements is too low for a data-driven ap-
proach, we used an augmentation method similar to [15].
We used SuperVP ! to process the original dataset. The
modifications applied to the sounds consist of a gain applied to
transient/attack components [16], noise components as well as
independent transposition of the signal source and the spectral
envelope.

The set of parameters is shown in table II. The limits
have been obtained by means of subjective evaluation of the
modified sounds aiming to avoid transformations that can be
perceived as unnatural by a human listener. Examples are
available in the supplementary material which can be found at
https://alavault.github.io/stylewavegan_eusipco/.

As a supplementary metric, the Fréchet Audio Distance
between the original dataset and the augmented one is 0.62.

Process Parameters

Remix attack 0.1, 0.3, 06, 15,2, 3
Remix noise 0.6, 1.5,2,3
Transposition 0, =100, £200
Spectral envelope transposition | 0, £200

TABLE I
AUGMENTATION OPERATIONS AND PARAMETERS

B. Training procedure

The training procedure is the same as StyleGAN 2 [7],
except that we trained the network on 2M samples. With a
batch size of 10, it totals to 200k iterations.

C. Imbalanced dataset

Balancing datasets is common in classification tasks but to
our knowledge, has never been done for generation tasks. As
shown in table III, our augmented dataset is quite unbalanced,
so to obtain a balanced dataset, we use a sampler which takes
elements from sub-datasets (one per label) at random accord-
ing to a uniform distribution. We call it “equal-proportion
sampling”, even if it is a form of oversampling method.

Element Proportion

Kick 3%

Snare 18%

Toms 45%

Closed hi-hat | 10%

Open hi-hat 22%
TABLE III

DATASET POPULATION

ISuperVP is available free of charge in form of a Max/MSP object at
https://forum.ircam.fr/projects/detail/supervp-for-max/

D. Baseline

In our evaluation, we will use NeuroDrum [11] and Wave-
GAN [10] as baselines when comparing using an objective
measure, and we will use demo samples provided by the author
of DrumGAN [4] as a baseline for a perceptual test. These
demo samples have a sample rate of 16kHz.

Because NeuroDrum [11] works with 16kHz sample rate we
adapted our model to use this sample rate for this comparison.
We also compared with WaveGAN [10], a model with a similar
training method, using our dataset with 44.1kHz. Here we
configured both networks to generate 0.3s (@44.1kHz).

Unfortunately, DrumGAN is not reproducible because of
missing source code or/and missing or unknown meta pa-
rameter. We also don’t have any insights on the contents of
the private dataset used for training DrumGAN, even if it
sounds like synthetic drums were used. DrumGAN results are
provided as a comparison to one of the most recent neural
drum synthesizer.

The lack of available source code and meta parameters for
[3] makes it unreproducible as well. However, we know the
dataset they built for this task is comprised of synthetic sam-
ples since they aimed at drum sound synthesis for electronic
music production.

E. Evaluation

1) Reference-free evaluation: We chose to use the Fréchet
Audio Distance (FAD) [9], a reference-free evaluation metric
for audio generation algorithms using a VGGish model trained
on AudioSet. We compare the embedding of the augmented
database to the embedding obtained from 64k samples gen-
erated by the evaluated network. In terms of computational
cost, we achieve a generation rate of 52drum sounds/s on one
1080GTX with the network in full resolution (1.5s@44.1kHz).

Network FAD
Baseline [11] 25.35
StyleWaveGAN@16kHz | 11.48

TABLE IV
FAD COMPARISON TO NEURODRUM [11] (LOWER IS BETTER)

Network FAD
Baseline [10] 13.08
StyleWaveGAN (SWG) 7.75
SWG + AutoFade (AF) | 6.84

TABLE V
FAD ON NETWORKS WITHOUT LABELS (LOWER IS BETTER)

Network FAD
SWG + labels 6.85
SWG + labels + AF 6.72
SWG + labels + AF + B 6.65
SWG + labels + AF + B + Envelope | 3.62

TABLE VI
FAD ON LABEL-CONDITIONED NETWORKS (LOWER IS BETTER)
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Class SWG SWG+AF+B | SWO+AF+B
+ Env
Kick 879 171 3.58
Snare 7.87 7.53 4.29
Tom 8.17 8.09 6.27
Closed HH 10.12 6.97 4.23
Open HH 8.26 8.91 412
TABLE VII

INTRA-CLASS FAD FOR LABEL-CONDITIONED STYLEWAVEGAN

2) perceptual testing: In our perceptual evaluation frame-
work, we are evaluating the quality of generation among 4 sets
of sounds : the original dataset, the sounds of the augmented
dataset that are generated with the most extreme setting
of the transformation parameters in table II, sounds from
StyleWaveGAN at full resolution(1.5s at 44.1kHz) and sounds
from DrumGAN (courtesy of Javier Nistal). The comparison
of these 4 sets is motivated as follows: first, results obtained
for the most extreme examples of the augmented dataset will
provide a lower bound for our model, and second the evalua-
tion of DrumGAN synthesis on their private dataset establishes
a baseline which is proven to be better than NeuroDrum [11]
in terms of FAD and claiming to be comparable to [10] in
terms of perceived quality.

Instead of NeuroDrum or WaveGAN, we could use Drum-
GAN [4] or Drysdale et al. [3] as our perceptual test baseline.
Both are unreproducible due to lack of available source code
and metaparamaters. Drysdale et al. uses drum type condition-
ing when DrumGAN only has perceptual feature conditioning.
However, we were able to get samples with drum type condi-
tioning for DrumGAN through personal communication with
the main author of [4]. Their performance differ, since Drum-
GAN can generate samples of 1.1s at 16kHZ, while Drysdale
et al. can generate samples of 0.4s at 44.1kHz. We will see in
the following discussion that the test participants indicate that
the decay time is important to evaluate the realness of drum
sounds, which gives an advantage to DrumGAN with its longer
samples even if the sample rate is lower. Also, both of these
solutions do not provide much insights about their training
datasets. We know that Drysdale et al. focus on sample-based
electronic music (EM), as described in their article. Samples
used in EM are inherently synthetic and are built to sound
different from real drums. Since our perceptual testing aims
to evaluate how close the synthesis sounds like a real drum,
having synthetic samples in the set will always be evaluated
as worse.

Given the limitations discussed above, we selected Drum-
GAN as our baseline in our perceptual test. Its role is to
represent one of the models of the state of the art.

The mean opinion score (MOS) is calculated as the average
of the score given by the test participants. Part of the samples
generated with StyleWaveGAN and used for the test are
available in the supplementary material here.

Due to its low-risk nature, this evaluation didn’t need an
ethic approval from the host organization.

Data MOS Cymbals Kick Snare

Real s 42403 | 41£1.1 | 41+£06 | 44£0.3

Augmented | 3.8+0.5 | 3.3+1.3 | 40+05 | 3.9£0.5

SWG 35+04 | 39£0.7 | 3.0£0.7 | 3.6+£0.8

DrumGAN | 2.34+05 | 23+1.3 | 28+0.6 | 1.6 +0.8
TABLE VIII

MOS ON DIFFERENT SETS OF SOUNDS, GLOBAL AND PER-LABEL (1 IS
LOWEST, 5 IS HIGHEST)

IV. EXPERIMENTAL RESULTS
A. Impact of our contributions

The first result we have is that we improved in terms of
FAD (tables IV and V) when comparing to NeuroDrum and
WaveGAN. We can also see from table V that using AutoFade
in the discriminator helped at getting a better generation.

The results with dataset balancing are mitigated. It improved
the supervised generation, as seen on table VI. However,
without the label conditioning, using it didn’t bring any
decrease in the FAD : since it makes the training and evalua-
tion dataset different (in proportions), the learned distribution
differs, impacting negatively the FAD.

Envelopes on the output are the greatest contribution to the
quality of generation in terms of FAD, almost halving it when
comparing to StyleWaveGAN without the output envelope.

B. Results of perceptual testing

9 people took part on the test. The total Mean Opinion Score
(MOS), with their confidence interval at 95%, is shown in table
VIII as well as more detailed per-class results. Even if the
number of participant is low, most of them (5 out 9) are audio
professionals. Each of them were presented with 24 samples to
evaluate along a scale going from ~’1-Poor” to ”5-Real drum”.
Data was randomly picked among the original and augmented
dataset as well as samples generated by StyleWaveGAN with
a fixed label.

The score of the augmented samples is slightly lower
than the real samples. This indicates that the extreme cases
of our augmentation strategy are a bit too extreme. Here
less extreme augmentation parameters with more intermediate
values should be selected for future work. The main problem
that can be found against the augmented samples comes from
the pitch changes made by the augmentation process. The pitch
change affect negatively the attack of the sound, making them
sounding less natural than the real data. While the change is
minor, it is sufficiently present to be perceived and graded
worse than a real sample. Note however that these extreme
parameter combinations remain rather rare in the full set of
augmented sounds.

Comparing StyleWaveGAN to DrumGAN we can conclude
that StyleWaveGAN trained on augmented data produces
results that are perceived either similarly close (kick) or signif-
icantly closer (snare, cymbals) to real drums than DrumGAN
trained on a drum dataset obtained from sources that are not
further detailed in [4]. We conclude that the StyleWaveGAN
model trained on augmented data achieves state of the art
performance for drum synthesis.
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We now discuss the StyleWaveGAN results in details. Given
StyleWaveGAN was trained on the full dataset of augmented
samples, a perfect model should produce results in between the
test results of the real data and the extreme examples of the
augmented data. We note that StyleWaveGAN achieves this
performance only for the cymbals. Snare and kick synthesis
remain less natural. A discussion with the participants of
the perceptual tests reveals the following problems: for the
kick drum sounds, the SWG model does not produce the
characteristics long tail of the resonances and is also missing
some energy in the frequency band below 100Hz. For snare
drum synthesis the main problem appears to be the fact that
SWG creates hybrids of sounds generated with sticks, mallets
and brushes. Concatenating for example an attack of a snare
sound obtained with a stick with a decay of a snare sound
obtained with a brush creates fair sounding but unrealistic
samples. These problems with kick and snare sounds indicate
that the current implementation of the discriminator is not
sufficient and further investigation will be required to improve
the discriminator loss such that it avoids these perceptual
problems.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method for drum synthesis
using StyleWaveGAN, an adaptation of a state of the art image
generator. The proposed method has explicit controls on drum
type to give some basic controllability.

We have shown the proposed style-based synthesis achieves
a significantly reduced FAD compared to recent DNN based
drum synthesis methods [10], [11]. perceptual tests also show
that our network performs quite well in terms of perceived
quality when comparing to processed and real data as well as
DrumGAN [4]. To the best of our knowledge the proposed
DNN is the first achieving drum synthesis with 44.1kHz
sample rate (for sounds with a duration of 1.5s) with an
inference speed more than 50 times faster than real-time on a
consumer GPU: in 1 second we can generate 50 sounds 1.5 s
long at described sample rate.

In terms of future work we will continue to work on
the sound quality and additional controls for velocity as
well as high-level control using perceptually relevant audio
descriptors.
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