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Abstract—Automatic Chord Recognition (ACR) is a popular
task to which Deep Learning (DL) has recently been successfully
applied. ACR is considered as a classification problem wherein
temporal frames of a piece of music are labelled according to
some given chord vocabulary. When performing ACR using DL
and larger chord vocabularies, an imbalance may be observed
where popular chord classes are recognised more easily. In this
paper, we propose random forest (RF) approaches in conjunction
with existing DL strategies to mitigate such imbalance in ACR.
We find improved balance in ACR is achieved when using DL-
extracted chroma features alongside a RF balanced per-chord
sampling strategy. Similar scores are achieved for accuracy and
the balanced Average Chord Quality Accuracy (ACQA) metric on
a Sevenths chord vocabulary, although the Sevenths accuracy is
diminished relative to less balanced cases. Mapping the Sevenths
estimations onto a MajMin vocabulary reveals little performance
loss relative to initial MajMin estimations.

I. INTRODUCTION

Automatic Chord Recognition (ACR) is a long-standing
and well-studied topic [1]. Although other perspectives are
possible [2], ACR was usually performed by classifying a
feature, often chroma, as belonging to a certain chord label
consisting of a root and chord quality [1]. The number of
potential theoretical chord qualities is large, therefore chord
vocabularies are employed to limit the potential complexity
of the classification problem. ACR was first proposed in [3]
where a large chord vocabulary was employed in experiments
performed on synthetic, single-instrument data. However, ACR
on real-world music was found to be difficult due to the
presence of non-chord tones, percussion, and other artifacts
in the signal. Hence, while some early work considered
large vocabularies [4], smaller and simpler vocabularies were
usually employed. The most well-known of these, referred to
here as MajMin, contains only 25 chords: Major and Minor
qualities in 12 transpositions and a ’no chord’ class [5]. Such
small chord vocabularies can appear to increase the accuracy
of an ACR model but offer a limited perspective, particularly
for certain styles of music.

Recently, Deep Learning (DL) has become the dominant
methodology in ACR and has led to improved ACR perfor-
mance. While small vocabularies are still often used [6] [7],
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several recent works have considered larger vocabularies in
what seems to be a growing interest [8] [9] [10] [11] [12]
[13]. There is a noted tendency of DL-ACR systems to perform
better on popular chord qualities than on rarer qualities. This
may be partially due to the uneven distribution of chords in
available labelled datasets, used for training, that emphasise
Western popular music. Furthermore, rarer complex chords are
often extensions of more popular chords, from which they may
be hard to distinguish. Recent methods have been proposed to
tackle this problem, using compound classifiers with structured
targets [10] [12], even chance training [9], and adaptive loss
functions [13]. The classification imbalance leads to mislead-
ing results for larger chord vocabularies, with rarer chords
often classified incorrectly. However, achieving balanced ACR
remains a difficult task with accuracy falling when balance
improves due to the previously skewed identification mode
[12].

In this paper we propose an alternative approach to the
imbalance problem in ACR. Rather than employ complex
classifiers in DNNs, we simply employ DNN-extracted chroma
features to which we apply a random forest chord classifier
that utilizes a balanced per-chord sampling strategy.

The rationale for achieving chord balance with this approach
is twofold. First, it is common for pitch-shift data augmenta-
tion to be applied in DL-ACR. This leads to balanced activity
across all pitch class targets at training time, but this augmen-
tation does not change the balance between different chord
qualities. Second, the random forest consists of many decision
trees, each of which can be trained in a less biased manner
through the use of the balanced sampling strategy. We also
provide a thorough ablation of this approach by comparing the
performance of ACR systems utilising Constant-Q Transform
(CQT) and chroma input features. For these features, we also
propose a novel multi-median filtering approach to exploit
temporal context as is performed in the convolutional networks
that extract chroma features. The proposed approaches are
described in Section 2. We then outline experiments comparing
these approaches in Section 3, before concluding.

II. METHODOLOGY

Originally proposed by Ho [14], random forests are an
ensemble learning classification method that employ several
decision trees. While decision trees are effective classifiers
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due to their execution speed, their potential complexity can be
limited by a loss of generalisation accuracy when presented
with previously unseen data. By applying the random subspace
method to a large collection of decision trees, potential bias
is distributed throughout the collection. A training dataset is
uniformly sampled with replacement to generate an arbitrary
number of smaller, incomplete datasets that are independent
of each other. During training, a small subset of features is
searched to find the optimal split at a given node in a decision
tree, thereby reducing correlation between individual trees.
The result is a large number of similar yet distinct decision
tree models, thus reducing variability and overfitting. When a
majority vote function is applied, the random forest acts as a
more stable classifier than a single tree.

A. Input features

ACR is chiefly concerned with converting a spectral rep-
resentation of a piece of music into chord labels. Most
commonly the spectral representation is a semitone Constant-
Q-Transform (CQT) [15] which is a log frequency spectrogram
in which each frequency bin corresponds to a pitch on the
equal temperament scale. It is possible to map a CQT, P ,
directly to chord label space L using some chord model M:

M(P ) −→ L. (1)

A direct mapping from CQT to a chord label space was rarely
performed before DL-ACR. An intermediate summary chroma
feature, C, was usually extracted from the CQT using the pitch
folding operation, F(P ) −→ C, which sums energy for each
pitch class across all octaves of the CQT. A chroma-based
chord model is then applied, such that ACR is expressed as

M(F(P )) −→ L. (2)

The chroma feature is a 12D vector, with each coefficient
representing the presence or absence of its associated pitch
class set in the original signal. In this way, chroma is a succinct
feature in which each dimension is semantically meaningful,
which is most apt for analysis of symbolic domain sources.
However, in the case of audio, transformation of spectral in-
formation into a chroma vector may result in information loss
with obfuscation of important acoustic relationships within
the original signal. On the other hand, use of the unfolded
CQT directly as an input feature may maintain structural
relationships between the constituent frequencies of a note
and reduce obfuscation due to harmonic smearing, in which
the harmonic overtones of one note either reinforce or conflict
with the harmonic frequencies of another note. The effect of
harmonic smearing is to overemphasise some pitch classes for
certain types of chords, while introducing conflicting noise to
others. Training a model on an unfolded full spectrum CQT
retains the frequency relationships necessary to identify these
situations, and may thus increase tolerance to clashes in higher
harmonic bins, resulting in improved ACR.

Recent DL-ACR methods tend to employ CQT inputs, often
employing a network N to map these directly to chord labels:
N (P ) −→ L. However, other approaches [16] [6] learn a

feature from the network: N ′(P ) −→ C, similar to pitch
folding and to which a separate model can be applied:

M(N ′(P )) −→ L. (3)

We compare three input features to the random forests cor-
responding to the cases (1)(2)(3). In each case, we employ the
same base CQT: the semitone RA-CQT feature that is formed
using spectral reassignment, as defined in [17]. This is used
directly as an input feature to the random forests (1), as the
source of a chroma feature under pitch folding (2) [17], and as
the input to a chroma-extracting Deep Neural Network (DNN)
(3). In this third case, we employ the convolutional FifthNet
[18]. By comparing these features, we examine whether the
pitch folding process may result in a loss of information that
may be detrimental to ACR, and test whether the DNN is
successful in extracting the most relevant information from
the CQT. It is noted that the DNN employs temporal context
in extracting a single chroma feature.

B. Weighting vs. Sampling

The problem with chord imbalance has been noted [1] [12].
To address imbalance in random forests and many machine
learning methods, a weighting scheme is often introduced
that places higher weights on rarer chord classes to boost
their contribution to training the model. A common weighting
scheme considers the number of samples of a given class in
a dataset, and uses the inverse of this number as a relative
weighting for that class. We employ this weighting approach
as a baseline for comparison.

Alternatively, we drop the random sampling associated with
random forests and propose a even distribution sampling
whereby the same number of samples from each class are
used to train each tree. Such samples are still drawn randomly
with replacement for each class. In this way, a richer model of
each rarer chord class is built at each tree than might be the
case where only a very few samples might represent a class.

C. Temporal Context

One advantage of using deep learning for ACR appears to
be the use of methods that exploit temporal context. Con-
volutional Neural Networks (CNNs) consider blocks of input
time frames to classify one output frame [7] while recurrent
networks [11] and transformers [19] consider longer temporal
patterns. In the context of random forests, we consider that
a multi-frame block, similar to those often employed with
CNNs, is unsuitable due to the very large dimensions in-
volved. Hence we propose an approach using multiple median
filters that present features that are smoothed at different
time scales. Specifically, we employ four median filters, each
applied in the pitch, or pitch class, dimension only. The filter
dimensions were set to {3, 7, 11, 15} as 15 frames has been
previously been considered good in DL-ACR [6] [20]. Each
filter produces an extra feature of the same dimension as the
original feature X ∈ RS×T . The extra features generated
through filtering are simply stacked on top of the original
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feature in the pitch dimension, resulting in the filtered feature
Xm ∈ R(5×S)×T .

While DL-ACR methods generally exploit temporal context,
it is still common to employ a sequential classifier such as a
Hidden Markov Model (HMM) [16] or Conditional Random
Field [7] [11] as a post-processing step to smooth noisy labels.
Here, a HMM is employed that uses a simple transition matrix
with homogeneous off-diagonal entries equal to α, a user tuned
parameter [21] [17].

III. EXPERIMENTS

We employed the dataset from [20] [17], which comprises
well-known datasets including the Beatles [22], Queen and
Zweieck subsets of Isophonics [23], RWC-POP [24], US-
POP [25], and Robbie Williams [26]. This compound dataset
consists of 598 songs of approximately 40 hours duration. For
training, the data was split six ways, using the same splits
as in [18]. Cross-validation was then employed, with 4 splits
used for training, one for validation and one for test in each
run.

Two chord vocabularies were used for classification. The
first, MajMin [27], uses Major and Minor qualities at 12 root
positions and one No-Chord (NC) class, leading to a total of
25 classes. Other chord types (including seventh chords) are
mapped into one of these classes as is commonly performed
[27]. The second vocabulary, Sevenths (also referred to as
7s) extends the MajMin vocabulary with the addition of
dominant7, major7, and minor7 chord qualities. Again, chord
types with further extensions (in this case, 9ths, 13ths, etc.)
are mapped onto these qualities [27]. The distribution of chord
qualities in the Sevenths vocabulary for the dataset employed
is given in Table 1.

Chord classification was performed on a framewise basis
using a frame size of 100ms. Beat synchronisation was not
applied. Given the chord notations and durations, each frame
was assigned a label according to the chord active for the ma-
jority of the frame duration. The simplest metric is Accuracy,
which relates the percentage of correctly estimated frames:

Acc =
Number of correctly estimated frames

Total number of frames
× 100%

To measure the balance in the chord qualities the Average
Chord Quality Accuracy (ACQA) is employed. First, accuracy
is calculated separately for each quality: Acc(q), and the mean
is taken to define ACQA :

ACQA =

∑
q∈Q Acc(q)

|Q|
We consider Q to consist of six qualities; the five chord
qualities in the Sevenths vocabulary and the NC class. In
addition, to provide an auxiliary metric for comparison to
classifications made using the MajMin vocabulary, we mapped
the Sevenths chord estimations onto the categories of the
MajMin vocabulary. Major7 & Dominant7 chord types were
mapped to the ’Major’ class, and the Minor7 chord type was
mapped to the ’Minor’ class. To distinguish this mapping from
the MinMaj vocabulary, we refer to this mapping as MM.

Quality Maj Min Dom7 Maj7 Min7 NC
% 61.4 16.8 6.9 3.3 7.4 4.3

TABLE I
DISTRIBUTION OF CHORD QUALITIES FROM SEVENTHS VOCABULARY IN

THE DATASET EMPLOYED.

Experiments were run comparing the CQT and both stan-
dard and DNN-extracted chroma features on the Sevenths
vocabulary. Each feature was tested using framewise and
multi-median filter inputs. In all these cases we compared
classwise weighting of random samples with the balanced
chord class distribution sampling. After initial experiments, we
employed tree depths of 12 for unfiltered chroma, and 36 for
all other features, as we found no improvement beyond these
sizes. Each forest consisted of 1000 trees, each of which was
trained using 500 samples per chord class. We also trained
using the MajMin vocabulary with similar hyperparameters.
Results were recorded for both direct framewise classification,
and classification with HMM post-processing.

A. Results

The results are given in Table 2 where it is seen that
performance using CQT is most strongly related to use of
the balanced datasets. Without such balance the forest does
not perform well in terms of ACQA, regardless of how the
temporal aspect is considered. With balanced data, the CQT
feature performs better when the data is filtered rather than
unfiltered; however, when the HMM is also applied the pattern
is reversed, with small improvements for the filtered data and
big improvements for the unfiltered balanced data.

The chroma feature performs worse than CQT over all
metrics. Similar to CQT, balanced sampling results in better
performance in terms of ACQA and MM, while the HMM
post-processing affects the results for filtered data by relatively
small amounts and poor performance is seen for filtered,
unbalanced data. However, unlike the CQT, when the HMM is
applied to labels extracted from unfiltered, unbalanced chroma,
performance metrics approach those found using the balanced
options.

Finally, the DNN-extracted chroma performs better than
both other features, with improvements of over 6% in terms of
the ACQA metric, regardless of use of the HMM. A similar
pattern to the chroma feature is seen; performance is much
better for unbalanced data when it is also unfiltered, while the
best performance is seen using the balanced data. Filtering is
seen to have a small negative effect on metrics apart from
Accuracy, while it is noted that the DNN chroma feature
is extracted using a convolutional network that considers
temporal context.

The results for the forests trained on the MajMin vocabu-
lary alone are also given in Table 2. These are most often
comparable to the MM metric for the data trained with a
Sevenths vocabulary. This is in contrast to Accuracy for the
Sevenths vocabulary, which drops when the results are more
balanced. This is interesting as it shows that the taper off in
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Framewise HMM
Sevenths MajMin Sevenths MajMin

Feature Filtered Balanced Acc ACQA MM Acc Acc ACQA MM Acc

CQT

× × 56.8 30.8 66.0 66.0 63.5 33.9 74.1 74.6
× ✓ 51.8 45.6 65.2 64.9 68 .2 58 .6 79 .6 79 .4
✓ × 66 .1 40.6 77.0 77 .2 66.7 40.6 77.8 78.3
✓ ✓ 64.9 55 .3 77 .5 76.0 67.8 57.4 79.2 78.7

Chroma

× × 40.3 35.2 58.3 61.0 62.8 55.5 76.9 78 .0
× ✓ 38.7 35.7 58.6 59.1 60.2 58 .2 77 .7 77.9
✓ × 64 .3 39.6 75 .7 75 .8 65 .7 39.8 77.2 77.4
✓ ✓ 58.9 51 .2 74.8 74.5 63.5 54.7 77.1 77.0

DNN Chroma

× × 64.5 59.3 80.0 80.5 68.2 61.8 81.4 81.7
× ✓ 61.2 61.4 79.9 79.9 65.0 65.0 81.3 81.1
✓ × 68.6 46.2 80.4 80.6 69.7 45.6 81.4 81.7
✓ ✓ 61.0 60.4 79.3 79.6 65.5 64.2 81.0 81.0

TABLE II
TABLE SHOWING ACR RESULTS, USING CQT, CHROMA AND DNN CHROMA FEATURES WITH OPTIONS FOR FILTERING AND BALANCING, BOTH WITH

AND WITHOUT HMM POST-PROCESSING. SEVERAL METRICS ARE GIVEN FOR SEVENTHS VOCABULARY. ACCURACY VALUES FOR MAJMIN
VOCABULARY ARE INCLUDED FOR COMPARISON. BOLD AND ITALIC FONTS DENOTE THE BEST RESULT FOR A GIVEN METRIC OVER ALL FEATURES, AND

FOR A GIVEN FEATURE, RESPECTIVELY.

performance is actually slight, and it is suspected that the
differences between the balanced and unbalanced Sevenths
estimations lie chiefly between classes belonging to the same
superclass e.g. when Minor7 and Minor are mistaken for each
other. The best results for the MajMin vocabulary for the
unbalanced DNN chroma feature are 81.7%, which was the
same result for the same features when a Gaussian Mixture
Model (GMM) classifier was applied in [18].

In general, we see that using balanced datasets tends to lead
to better ACQA and MM metrics, although in some cases
accuracy is sacrificed for the sake of balance. Filtering seems
to have a positive effect on all results without the HMM being
applied, although generally it is found that balanced data with
HMM post-processing performs better when filtering is not
employed.

It is notable that the MM metric is not affected much
for either chroma feature, although a relatively large drop
in MM was seen using the CQT feature without filtering or
balancing. This drop is also seen for the data trained with
MajMin labels. Apart from this unfiltered, unbalanced case the
CQT does improve on the standard chroma feature. While one
might assume that the extra information in the CQT relative
to the chroma feature leads to CQT being superior for the
task, this result suggests that it is more difficult to extract this
information in a meaningful way.

On a similar note, given the improved performance seen
for the DNN Chroma in general, we can assume that the
neural network employed was capable of extracting relevant
information from the CQT to produce a probabilistic chroma
vector that is more apt for the task than the standard energy-
based chroma feature. Equally, given the relatively strong
performance of the DNN chroma feature without the HMM or
filtering applied, this could be considered a result of temporal
context processing in the CNN. However, it seems that there
might be some room for improvement.

It is interesting that applying the HMM to the DNN chroma
feature results in only a small increase in MM, while improv-

ing Acc and ACQA by larger amounts. This suggests that the
decision boundaries between the different qualities in each of
the Major / Minor superclasses in the Sevenths vocabulary
could be sharper.

IV. CONCLUSIONS

We considered the use of random forests to address the
chord imbalance problem in ACR, which we tested on a
Sevenths vocabulary containing chords of varying cardinality.
Particularly, we proposed an even chord class distribution
training scheme for the forests, which was found to be
successful for balancing the per-chord accuracy, while a DNN-
extracted chroma feature was seen to be superior to other
features. While the accuracy was seen to diminish using the
Sevenths vocabulary, we note that the superclass accuracy, i.e.
MajMin vocabulary, was not affected. Hence we consider that
the approach is relatively effective in separating members of
the same superclass, e.g. distinguishing between Minor7 and
Minor. However, given the effect of HMM smoothing on the
Acc and ACQA metrics we propose that further improvements
might be made. While balancing chords seems a worthwhile
endeavour, it is perhaps the case that the most balanced
ACR system is not the optimal solution for every application.
Even so, we consider that random forests might easily be
tuned towards other considerations, simply by considering the
training data balance. Future work will consider further chord
qualities.
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