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Abstract—Nonnegative Matrix Factorization (NMF) is a pow-
erful technique for decomposing a music recording’s magnitude
spectrogram into musically meaningful spectral and activation
patterns. In recent years, musically informed NMF-based audio
decomposition has been simulated using neural networks, which
opens up new paths of exploiting recent deep learning frame-
works, including libraries for efficient gradient computations. In
this article, we continue this strand of research by considering
Nonnegative Autoencoders (NAE) in combination with gradient
projection and structured dropout techniques. Conducting exper-
iments based on piano recordings, we compare the decomposition
results of NAE-based approaches with those obtained from a
score-informed NMF variant. In this context, we examine various
gradient descent methods using fixed and adaptive learning rates
for deriving the NAE encoder and decoder parameters. Among
others, we show how the famous multiplicative update rules for
NMF can be transferred to the case of NAEs. The overall goal
of our contribution is to illustrate the benefits and limitations of
the various techniques concerning implementation issues (CPU,
GPU), convergence speed, and overall runtime.

Index Terms—Nonnegative Autoencoders, Adaptive Gradient
Methods, Nonnegative Matrix Factorization, Audio Decomposi-
tion, Audio Source Separation

I. INTRODUCTION

Nonnegative Matrix Factorization (NMF) is a prominent
low-rank factorization method that imposes nonnegativity con-
straints in all matrices involved. Notably, its effectiveness
and ability to yield interpretable results have attracted great
attention in various research fields [1], [2]. In the context
of music processing, NMF has been widely applied for the
decomposition of complex sound mixtures, using the magni-
tude spectrogram of music signals as input representation [3]–
[10]. As a result of the decomposition, NMF approximates
the magnitude spectrogram by the product of two nonnega-
tive matrices, where the columns of the first matrix encode
spectral prototype patterns (called templates) and the rows of
the second matrix encode their occurrences in time (called
activations).

Motivated by recent advances in designing and training neu-
ral networks, Smaragdis and Venkataramani [11] introduced a
Nonnegative Autoencoder (NAE) architecture as a neural net-
work alternative for NMF-based audio decomposition. Fig. 1
gives an overview of the simulation of NMF through a shallow
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Fig. 1. (a) NMF used for decomposing a nonnegative matrix V into the
product of a nonnegative template matrixW and nonnegative activation matrix
H . (b) Simulation of the decomposition using NAE (see the text for details).
The learned components are shown in red.

NAE architecture, which comprises a single-layer encoder and
a single-layer decoder. The NAE decoder directly corresponds
to the NMF template matrix. However, rather than learning
an activation matrix as in NMF, the NAE learns an encoder
which yields an activation matrix as output (also called code).
To ensure the nonnegativity constraints of templates and
activations, one can combine NAEs with gradient projection
and structured dropout techniques [12]. The simulation of
NMF through NAE makes it possible to exploit recent deep
learning frameworks including libraries for automatic and
GPU-accelerated gradient computations. This may also open
up new paths for tackling the audio decomposition problem
with deeper and more complex models.

As starting point of this paper, we consider the work by
Ewert and Müller [13], which uses a score-informed NMF
variant for decomposing the magnitude spectrograms of piano
recordings. As the main contribution of this paper, we simulate
this original approach by considering different NAE variants
(inspired by [11], [12]) and conduct systematic experiments
to compare the resulting decompositions with the NMF-based
approach used as a reference. In particular, we show how
one can adapt the famous multiplicative update rules of
NMF [1] to the case of NAEs. Furthermore, we investigate
projected versions of additive gradient descent methods such
as Stochastic Gradient Descent (SGD), Root Mean Square
Propagation (RMSprop) [14], and Adaptive Moment Opti-
mization (ADAM) [15]. Our systematic experiments highlight
the benefits and limitations of different techniques in terms
of implementation issues, convergence speed, and overall
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Fig. 2. Decomposing the magnitude spectrogram of an audio excerpt of
Chopin’s Prelude Op.28 No.4 into template and activation matrices. The
information related to the note number p = 71 (B4) is indicated by the
red rectangular frames.

runtime.
The remainder of the paper is organized as follows. In

Section II, we provide an overview of the score-informed NMF
approach that serves as our reference. In Section III, we inves-
tigate the simulation of NMF through NAE and introduce the
multiplicative update rules for NAE. In Section IV, we report
on our systematic experiments and conclude in Section V with
prospects on future work.

II. SCORE-INFORMED NMF FOR AUDIO DECOMPOSITION

NMF is a nonnegative factorization algorithm that accounts
for an additive, part-based representation of a nonnegative
input matrix. Nonnegative matrix entries prevent undesired
effects such as destructive inferences, where a positive com-
ponent might be canceled out by adding a kind of inverse
(negative) component.

Given the magnitude spectrogram of a music recording
V ∈ RK×N

≥0 and a target rank R ∈ N that is much smaller
than both K ∈ N and N ∈ N, NMF seeks an optimal
approximation V ≈ WH enforcing both learned matrices
W ∈ RK×R and H ∈ RR×N to be nonnegative. As shown in
Fig. 2, W indicates the template matrix and H the activation
matrix, where K and N , respectively, denote the number of
frequency and time bins in the input spectrogram. In this
example, the target rank R corresponds to the number of
distinct pitches played in the input music recording. The
loss function of the least-square optimization problem (with
additional nonnegativity constraints for W and H) can be
written as

ϕ(W,H) = ||V −WH||2F , (1)

where || · ||F is the Frobenius norm.
Alternating Least Squares (ALS) defines the optimization

procedure, where the first matrix W is updated with fixed
H , and then H is updated with fixed W , and so on. In
particular, the iterative multiplicative update rules in [1] for
NMF have proven to be easy and efficient. The crucial idea is
to use an adaptive learning rate, which transforms the additive

update rules of the usual gradient descent to multiplicative
ones, resulting in

H ← H � (W>V )� (W>WH + ε),

W ←W � (V H>)� (WHH> + ε),
(2)

for the case of the Euclidean loss. Here, � and � denote point-
wise multiplication and division, respectively. The parameter
ε denotes the machine epsilon, which is used to avoid division
by 0.

Besides nonnegativity constraints, prior musical knowledge,
e.g., coming from a musical score, can also be easily integrated
into the learning process of NMF to guide the decomposi-
tion [8], [16], [17]. Multiplicative update rules in Eq. 2 ensure
that the zero-valued matrix entries in the template and activa-
tion matrices remain zero during the entire learning process.
Therefore, one can avoid undesired template and activation
values by initiating the corresponding positions in the matrices
with zero. In [13], the templates are initialized using a sparse,
binary matrix WC ∈ {0, 1}K×R to constrain frequencies
and enforce an overtone model. Similarly, using the score
information, the activation matrix can be constrained through
a sparse, binary matrix HC ∈ {0, 1}R×N . As an example, the
red boxes in Fig. 2 indicate spectral and activation constraints
(initialized with one-values inside and with zero-values outside
the red boxes) corresponding to the note number p = 71 (B4).

This work uses the multiplicative NMF with Euclidean loss
as the reference model. We apply the same score-informed
initialization procedure as described in [13].

III. SIMULATION VIA CONSTRAINED NAES

Following [11], [12], we now show how one can simulate
constrained NMF via an NAE model in combination with
projected gradient descent methods and rectifier activation
functions.

The NMF model can be reformulated through a simple
linear autoencoder [11], [18] as

H =WEV,

V̂ =WDH.

The matrix WE ∈ RR×K denotes the encoder, which yields
the activation matrix H as output. The decoder WD ∈ RK×R

can be thought of as the equivalent to the template matrix
W in the NMF decomposition. To ensure the nonnegativity of
the activation output matrix H and the template weight matrix
WD in NAE, one has to introduce further constraints.

Our proposed NAE model applies a rectified linear unit
(ReLU) after the encoder layer as in [19] to ensure the
nonnegativity of the activation matrix H . For the nonnegativity
of the decoder matrix WD, we use a projected gradient descent
method as in [20], setting the negative values in WD to
zero during training. Chorowski and Zurada [21] state that
constraining the weight matrices to be nonnegative improves
the interpretability of an autoencoder’s operation, whereas
it does not lower the network’s capability. In contrast, our
experiments showed that applying a simple ReLU after the
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encoder layer resulted in a better convergence, rather than
using projected gradients for the encoder layer as well.

As in the NMF case, prior music knowledge can also be
integrated into the NAE model to guide the learning process.
Ewert and Sandler introduced the structured dropout for acti-
vation constraints in [12]. Dropout layers typically regularize
networks to avoid overfitting by randomly setting neurons to
zero during the training process [22]. In contrast, structured
dropout imposes prior musical knowledge and selectively
removes undesired activations by setting

H ′ = HC �H.

To enforce structured dropout, one can adapt the loss function
in Eq. 1 to the constrained NAE case as follows:

ϕ(WE ,WD) = ||V −WDH ′||2F
= ||V −WD(σ(WEV )�HC)||2F ,

where σ denotes the ReLU activation function. Computing the
gradients with respect to the encoder and decoder matrices,
one can derive multiplicative update rules for this NAE model
similar to the NMF case:

WE ←WE �
(((

(W>D V )�HC
)
V >

)
�((

(W>DWDH
′)�HC

)
V > + ε

))
,

WD ←WD �
(
(V H ′

>
)� (WDH

′H ′
>
+ ε)

)
.

(3)

For a derivation of the multiplicative update rules for NAE,
we refer to [23]. We call this model as multiplicative NAE.

To train an NAE, additive methods like stochastic gradient
descent (SGD), in which the learning rate remains constant
during training, can also be used. Another alternative is the
integration of other adaptive strategies for optimizers such as
Root Mean Square Propagation (RMSprop) [14] and Adaptive
Moment Optimization (ADAM) [15], which adjust the learn-
ing rate during training.

As for multiplicative NMF, the multiplicative NAE has the
property that zero-valued entries remain zero. To enforce this
property for template weights WD also in the case of using
additive update rules, we add further projection by applying
binary masking on WD using the constrain matrix WC:

WD ←WD �WC.

IV. EXPERIMENTS

This section reports on our experiments where we compare
various NAE-based approaches with the score-informed NMF
model used as reference. To this end, we decompose the
magnitude spectrograms of piano recordings into musically
meaningful spectral vectors and their activations. In our ex-
periments, we use eight publicly-available, nonsynthetic piano
recordings using the same experimental setting as in [13].1

1http://resources.mpi-inf.mpg.de/MIR/ICASSP2012-ScoreInformedNMF/
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Fig. 3. Continuation of our Chopin example from Fig. 2. (a) Template
matrix W (left) and activation matrix H (right) learned by the score-informed
NMF model. (b)-(e) Difference between template (left) and activation (right)
matrices obtained from NMF (used as reference) and NAE-based approaches.
The columns of W and WD are `1-normalized. (b) NAE trained with
multiplicative update rules. (c) NAE trained with SGD with a fixed learning
rate γ = 0.1. (d) NAE trained with ADAM. (e) NAE trained with RMSprop.

The pieces are listed in the Table I. The music recordings are
mono and sampled at 22.05 kHz. Their durations vary between
around 100 seconds and 9 minutes.

In the preprocessing phase, we compute the magnitude
spectrograms of each recording using a Hann window of
size 2048 and a hop size of 1024. For the reference NMF
model, we use the same initialization procedure as in [13].
Similarly, we initialize the decoder matrix WD of NAEs using
the binary constrained matrix WC , while we initialize and
the encoder matrix WE randomly. At the end of the training
of each model, we `1-normalize the columns of the learned
matrices W and WD, and accordingly scale the columns of the
activation matrix H . This normalization and rescaling accounts
for the scale ambiguity in the NMF decomposition and makes
the decomposition results better comparable.
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Fig. 4. Average column-wise absolute approximation loss between V̂ and
V per iteration evaluated on the entire dataset. All the NAE variants use the
same weight initialization procedure.

TABLE I
APPROXIMATION ERROR BETWEEN V AND V̂ (COLUMNWISE AVERAGE)

OF NMF AND NAE-BASED APPROACHES

File ID
Model NMF NAE NAE NAE NAE

Mult. Mult. SGD ADAM RMSprop

Chopin Op028-04 SMD 46.4 49.0 62.4 57.6 48.1
Chopin Op028-15 SMD 48.5 53.2 67.3 66.2 50.9
Chopin Op066 SMD 79.5 87.2 139.0 101.1 85.7
Beethoven Op031No2-01 SMD 90.7 99.2 105.1 104.4 94.9
Chopin Op028-01 SMD 94.8 103.6 299.9 122.8 97.4
Bach BWV875-01 SMD 97.5 107.3 219.9 129.2 104.3
Beethoven Op111-01 EA 103.7 129.4 328.5 148.4 113.0
Chopin Op064No1 EA 131.9 145.9 383.6 161.6 137.2

In the following, we regard an iteration to be the update of
both the matrices W and H in the NMF case, and similarly
WE and WD in the NAE case. In our experiments, we
performed 10, 000 iterations in the training phase. During
training, we used a learning rate of γ = 0.1 for the SGD,
and the recommended default values for the RMSprop [14]
and ADAM [15] optimizers.

Implementing the multiplicative NMF and NAE is straight-
forward using the derived update rules in Eq. 2 and Eq. 3
respectively. We implemented the multiplicative models with
NumPy using matrix operations. Furthermore, we used the
Tensorflow library to exploit the automatic gradient compu-
tation and GPU acceleration to train the NAE models that
use additive gradient descent techniques. For the GPU-based
computations we used a single Nvidia GTX 1080 Ti GPU.

To get a first impression of the approximation behavior of
the various decomposition approaches, Fig. 3 shows a compar-
ison of learned template and activation matrices learned by the
reference NMF model and ones learned by the various NAE-
based approaches. First, note that Multiplicative NMF and
NAE yield similar template and activation matrices. Further-
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s

Fig. 5. Runtime comparison of the multiplicative NAE and NAE variants
trained with RMSProp. The NAE variant trained on GPU with RMSprop is
shown with dashed lines.

more, among the additive NAE-based approaches, the NAE
variant trained with SGD leads to the worst results compared
to the NMF reference. Our comparison also indicates that
NAEs trained with adaptive gradient descent methods lead
to template and activation matrices close to the NMF case
when using a huge number of iterations (up to 10, 000 in our
experiments).

Next, we compare the approximation quality of the various
decompositions in a quantitative fashion. Table I shows a
comparison of approximation errors between V and V̂ yielded
by the NMF reference and NAE-based approaches based on
the entire dataset. Here, each entry indicates the average
columnwise `1-error between the approximation matrix V̂ and
the input spectrogram V . For example, the first row shows
the results obtained from the spectrogram decomposition of
the entire recording of Chopin’s Prelude Op.28 No.4. The
multiplicative NMF results in the approximation error of 46.4,
and the multiplicative NAE in a similar value of 49.0. Among
the NAE variants trained with additive gradient descent tech-
niques, RMSprop reaches the smallest approximation error of
48.1, whereas SGD results in the highest approximation error
of 62.4. Moreover, we can infer that the reference NMF model
and NAE variants perform similarly over the entire dataset:
the multiplicative NMF leads to the best approximation, while
NAE with RMSprop results in the smallest approximation
error among the NAE variants.

In our next experiment, we analyze the convergence behav-
ior of all approaches over the number of iterations. Fig. 4
illustrates the mean and standard deviations per iteration over
the columnwise Euclidean error, evaluated using all eight
recordings in the dataset. The rapid decay in error after
the first iteration of the multiplicative models is remarkable,
whereas additive NAE variants need more iterations until they
reach a steeper decline in the error. NAE with SGD shows a
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slow and unstable convergence behavior, resulting in a poor
approximation even after 10, 000 iterations. We also have tried
using other learning rates for the SGD case; however, it is
unclear how to choose an optimal learning rate that guaran-
tees convergence. γ = 0.1 has shown the best performance
among various learning rates. In contrast, NAE with ADAM
converges after 10, 000 iterations to a similar decomposition as
NMF. Similarly, NAE with RMSprop converges to this result
after only 1, 000 iterations. It is also worthwhile to note that
the both adaptive NAE variants reach a decomposition result
as NMF, although NAEs learn fewer parameters than the NMF
reference. (The encoder WE ∈ RR×K has usually much fewer
parameters than the activation matrix H ∈ RR×N .)

Finally, we compare in Fig. 5 the training runtime of
the multiplicative NAE and NAE with RMSprop. Although
the multiplicative NAE shows a very steep decay within
the first second, NAE with RMSprop trained on CPU and
GPU both outperform the multiplicative model after around
100 seconds. Additionally, the gradient computation of the
multiplicative update rules for NAEs becomes challenging for
deeper networks. The implementation of NAE with RMSprop,
on the other hand, exploit the automatic gradient computation.
We also see that the GPU-accelerated model converges twice
as fast as the NAE with RMSprop trained on CPU. The
hardware acceleration becomes more evident in the case of
deeper and more complex networks, which involve more
matrix multiplications.

V. CONCLUSIONS

In this paper, we investigated different NAE-based ap-
proaches for decomposing piano recordings into musically
meaningful spectral vectors. We simulated the reference score-
informed NMF model with various NAE-based methods. We
showed that NAEs acquire higher efficiency through hardware-
accelerated frameworks while yielding similar results as the
reference NMF model. We also explored different adaptive
gradient technique methods, including multiplicative rules
for NAEs. We showed that the GPU-accelerated, adaptive
RMSprop method outperformed other NAE variants in terms
of the approximation quality and efficiency, while the learned
templates and activations remain similar to those of the NMF
reference. In the future, we aim to develop deeper and more
complex models, which result in faster and better convergence
and preserve interpretability. This will enable the design of
explainable deep learning models, as our constrained NAE,
while improving the performance of the network.

REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Proceedings of the Neural Information Processing
Systems (NIPS), Denver, Colorado, USA, November 2000, pp. 556–562.

[2] N. Gillis, Nonnegative Matrix Factorization. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 2020. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611976410

[3] P. Smaragdis and J. Brown, “Non-negative matrix factorization for
polyphonic music transcription,” in Proceedings of the IEEE Workshop
on Applications of Signal Processing (WASPAA), 2003, pp. 177–180.

[4] N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity and
smoothness in bayesian non-negative matrix factorization applied to
polyphonic music transcription,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 3, pp. 538–549, 2010.

[5] R. Hennequin, R. Badeau, and B. David, “NMF with time–frequency
activations to model nonstationary audio events,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 744–753,
2011.

[6] A. Lefevre, F. Bach, and C. Févotte, “Semi-supervised NMF with
time–frequency annotations for single-channel source separation,” in
Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Porto, Portugal, 2012, pp. 115–120.

[7] J. Fritsch and M. D. Plumbley, “Score informed audio source separation
using constrained nonnegative matrix factorization and score synthesis,”
in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vancouver, Canada, May
2013, pp. 888–891.

[8] S. Ewert, B. Pardo, M. Müller, and M. Plumbley, “Score-informed
source separation for musical audio recordings: An overview,” IEEE
Signal Processing Magazine, vol. 31, no. 3, pp. 116–124, April 2014.

[9] P. Smaragdis, C. Févotte, G. J. Mysore, N. Mohammadiha, and M. D.
Hoffman, “Static and dynamic source separation using nonnegative
factorizations: A unified view,” IEEE Signal Processing Magazine,
vol. 31, no. 3, pp. 66–75, 2014.

[10] C. Dittmar and M. Müller, “Reverse engineering the Amen break –
score-informed separation and restoration applied to drum recordings,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 24, no. 9, pp. 1531–1543, 2016.

[11] P. Smaragdis and S. Venkataramani, “A neural network alternative to
non-negative audio models,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2017, pp. 86–90.

[12] S. Ewert and M. B. Sandler, “Structured dropout for weak label and
multi-instance learning and its application to score-informed source
separation,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), New Orleans,
Louisiana, USA, 2017, pp. 2277–2281.

[13] S. Ewert and M. Müller, “Using score-informed constraints for NMF-
based source separation,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Kyoto, Japan, 2012, pp. 129–132.

[14] T. Tieleman and G. Hinton, “RmsProp: Divide the gradient by a running
average of its recent magnitude,” October 2012.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference for Learning Represen-
tations (ICLR), San Diego, California, USA, 2015.

[16] S. Raczynski, N. Ono, and S. Sagayama, “Multipitch analysis with
harmonic nonnegative matrix approximation.” in Proceedings of the In-
ternational Society for Music Information Retrieval Conference (ISMIR),
Vienna, AT, 2007, pp. 381–386.

[17] H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch analyzer
based on harmonic temporal structured clustering,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 982–
994, 2007.

[18] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, pp. 504–507, 2006.

[19] P. Smaragdis and S. Venkataramani, “A neural network alternative to
non-negative audio models,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), New
Orleans, Louisiana, USA, 2017, pp. 86–90.

[20] C. Lin, “Projected gradient methods for nonnegative matrix
factorization,” Neural Computation, vol. 19, no. 10, pp. 2756–2779,
2007. [Online]. Available: https://doi.org/10.1162/neco.2007.19.10.2756

[21] J. Chorowski and J. M. Zurada, “Learning understandable neural
networks with nonnegative weight constraints,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 26, no. 1, pp. 62–69, 2015.
[Online]. Available: https://doi.org/10.1109/TNNLS.2014.2310059

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, June 2014.

[23] T. Zunner, “Neural networks with nonnegativity constraints for de-
composing music recordings,” Master’s thesis, Friedrich-Alexander-
University of Erlangen-Nuremberg, 2021.

258


