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Abstract—A pipeline for automatic detection of chainsaw
events in audio recordings is presented as the means to detect
illegal logging activity in a protected natural environment. We
propose a two-step process that consists of an activity detector at
the front end and a deep neural network (DNN) classifier at the
back end. At the front end, we use the Summation or Residual
Harmonics method in order to detect patterns with harmonic
structure in the audio recording. Active audio segments are
consequently fed to the classifier that decides upon the absence
or presence of a chainsaw event. As acoustic feature, we propose
the widely-used amplitude spectrogram, passing it through the
recently proposed Per-Channel Energy Normalization (PCEN)
process. Results based on real-field recordings illustrate that
the proposed end-to-end system may efficiently detect low-SNR
chainsaw events at a very low false detection rate.

I. INTRODUCTION

Human activity is considered today as the primary reason
for habitat loss for a large number of Earth’s plant and
animal species. It contributes to the permanent loss of species
but also to the weakening of the ecosystems that are of
significant importance for the overall health of the planet and
as a consequence, to the quality of the human life. Estimates
suggest the Earth has lost about half of its forests in 8000
years of human activity, with much of this occurring in recent
decades.

Acoustic sensors in natural environments may be of great
use towards their protection. One common application is the
use of acoustic sensors for monitoring sounds produced by the
various species while in their natural environment [1], [2]. The
other use is detecting illegal human activity inside protected
areas such as trespassing, illegal hunting, logging, grazing etc
[3]-[5]. These tasks become possible with the use of low-
cost, power-efficient electronic devices known as Autonomous
Recording Units (ARUs). ARUs are capable of recording
continuously for several days or weeks and considering that
several recorders can be used simultaneously, huge amounts of
audio data can be gathered in relatively short periods of time.
As a consequence, it is infeasible for human experts to hear
or visually inspect the entire collection of recordings. Thus,
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automatic or semi-automatic processing of the sound files is
necessary for analyzing the information in a timely manner.

A limited number of different approaches have been pro-
posed for recognizing chainsaw activity from audio record-
ings. Most of them were developed based on conventional
classification techniques [6]-[11] and were evaluated based on
small-scale datasets, with limited consideration on the effect
of background noise in the recording.

An issue of primary importance in classifying sound sources
located far from the acoustic sensor is robustness to noise and
also, robustness to variations in the level of the acoustic pattern
of interest [12]. In this paper, this task is investigated from
the perspective of DNNs. Robustness to noise with DNNs has
been studied from several researchers from the perspective of
feature enhancement [13]-[15] and also, from the perspective
of feature normalization [2], [12], [16]. Also, several works
have demonstrated the importance of data augmentation [15],
[17]-[19] in helping the network to generalize to variations
of the acoustic patterns and more generally, in avoiding
overfitting.

In this paper, we present an open-access end-to-end system
[20] for the detection of chainsaw events in real-field audio
recordings. The system consists of a Voice Activity Detector
(VAD), at the front end, and a binary DNN classifier, at the
back end. As input to the classifier we present a spectrogram
domain acoustic feature that is passed through the recently pro-
posed Per-Channel Energy Normalization (PCEN) process [2],
[16]. Our results demonstrate the effectiveness of PCEN for
the intended task and the significant advantage in classification
performance that can be achieved using data augmentation.
Overall, the proposed pipeline may efficiently detect low-SNR
chainsaw events at a very low false-positive rate, which is an
important requirement when considering the huge amounts of
audio data involved in such applications.

II. METHODOLOGY

A. Voice Activity Detection

Due to the fact that chainsaw sound has a harmonic struc-
ture similar to voiced speech, we exploit the Summation of
Residual Harmonics (SRH) method [21] for Voice Activity
Detection (VAD), which is well-known for it’s ability to
provide reliable voicing decisions in noisy conditions. Note
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that while this VAD approach was initially designed for speech
signals, it is used for the first time to our knowledge in the
context of environmental sound classification in this paper. The
outcome of the SRH approach that we utilize is a time-varying
metric of the voicing activity that, for the needs of this paper,
is called Voicing Strength (VS). The metric becomes available
as a time-series in the form v(7), where 7 is the time-frame
index. VS is calculated using the relevant function provided
in the COVAREP toolbox [22]. The reader is referred to the
original publication [21] for more details regarding the VAD
approach.

To demonstrate the robustness of the proposed VAD in
chainsaw detection, we plot in Fig. 1(a) the amplitude spectro-
gram of a portion of a real field recording containing chainsaw
activity. In Fig. 1(b) one can see the variation of VS as a
function of time while subfigure (c) illustrates the variation
of the energy of a high-pass-filtered version of the signal as
a function of time. The harmonic structure of the chainsaw
sound is more or less visible in (a) and the chainsaw activity is
clearly correlated with a rise of v(7) in (b). On the other hand,
the variations of the energy follow less clearly the chainsaw
activity, especially in the time interval between 2 and 5 s
where the chainsaw sound is weaker. This justifies the use
of VS as a criterion for chainsaw activity, at the same time
showing that energy criteria that are conventionally utilized
for audio segmentation are not trustworthy at so low SNR
conditions. Finally, it is worth to note from Fig. 1(a) that
chainsaw harmonics are visible only up to 1kHz. Working
with real-field recordings we have observed that this is a
very regular phenomenon. It can be explained by the fact
that high-frequency chainsaw harmonics are weaker than the
low-frequency ones and are thus often masked by background
noise. Moreover, air absorption [23] causes sound waves to
attenuate in quadratic proportion to their frequencies, which
makes high-frequency components even less detectable when
propagating at long ranges. This observation is exploited in
order to pose a limit to the highest frequency of analysis in
the construction of the activity detector and also in the choice
of the acoustic features extracted for classification.

B. VAD-based Segment Selection

Using VS as a metric to detect portions with harmonic
structure in a long (e.g. 24 hr) audio recording is an essential
part of the workflow followed for chainsaw detection in this
paper. Our VAD-based segment selection algorithm (VAD-
SS) is utilized as the front-end of our chainsaw detection
system, followed by a binary DNN classifier at the back-
end. Moreover, the presented VAD-SS process is exploited
for automated spotting of interesting sound events from the
original recordings and has thus been used for creating the
dataset that is required for training the back-end. Key to auto-
matic segmentation is the observation that chainsaw activity is
expected to produce high VS values not at single isolated time-
frames, but along multiple continuous time-frames. Following
this skeptic, we form the requirement that there are at least
N, consecutive time-frames with VS values greater than a
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Fig. 1. The amplitude spectrogram of an audio segment with chainsaw activity
is shown in logarithmic scale in (a). The corresponding VS values as a function
of time are shown in (b) and the instantaneous energy as a function of time
in (c).

threshold T§,; in order for an audio portion to be selected
for further processing. In more detail, the following process is
followed for extracting audio segments from a long continuous
recording;

1) Calculate VS in terms of v(7) across the entire duration
of the recording

2) Construct the collection of all the active time-frame in-
dexes, where an active time-frame is defined as any time-
frame where condition v(7) > T, holds. Consecutive
active time-frames are merged together to form a single
so-called utterance, starting at time 759"t and ending at
time Tﬁ”d, where u is the utterance index.

3) Keep only the utterances which are formed by more than
N, consecutive time-frames, i.e., 7¢"¢ — 75t7t > N,
holds.

4) If there are any utterances with lengths smaller than an
integer number Ny, extend their lengths to become equal
to Ny. Perform this operation by simply reducing 75t
and increasing 75"¢ an equal number of time-frames.

5) Finally, if there is overlap between two consecutive
utterances, merge them in order to form a single longer
utterance.

Following this operation, several utterances of different
lengths are produced from each audio recording and the length
of each utterance is at least N; time-frames. The reason for
using a different value for Ny and N, is that a chainsaw
revving may last several multiples of N.,, but due to the
high level of noise or due to the non-stationary nature of the
particular chainsaw instance, only a small portion of the event
passes the v(7) > Ty, criterion. Additionally, the tactic to
extend the acoustic representation along time makes it easier
for the listeners to annotate the data, possibly by allowing
them to better perceive the transitions at the beginning or end
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of the underlying event.

For the needs of data collection VAD-SS was performed
with T, in the range [0.8,0.96], N, = 3 and N; = 23.
Additional parameters that should be reported concern those
used to invoke the ”pitch_srh” function in COVAREP toolbox,
that was necessary for calculation of VS; The number of
harmonics was set to 4 and the minimum and maximum F'0
values were set to 40 and 760 Hz respectively. Finally, the
frame-length and hop-size for calculation of the SRH were
180 and 60 ms respectively, which means that the length of
an extracted utterance is ensured to be at least 1.5 s.

C. Acoustic Features

Several spectro-temporal representations were tested as
features for chainsaw detection with DNNs. An observation
common to all cases was that frequencies above 2 kHz do
not add significant gain to the classification performance and
more over, lead to an unnecessary increment of the feature
dimension. This observation is also discouraging for using
mel-spectrogram as an acoustic feature since the mel scale
is approximately linear up to the considered frequency limit
[24].

In this paper, we present results for two different acoustic
features which are based on the spectrogram of the raw audio
signal. Transformation from the time domain to the time-
frequency (TF) domain is performed with a window size of
720 samples (90 ms) and hop length of 120 samples (30
ms), while the size of FFT used is equal to 1024. Along the
frequency dimension, we take into account only frequency bins
with indexes from 9 to 215, corresponding to frequencies from
63 to 1680 Hz. From this basic TF representation, the first
acoustic feature, termed Amplitude Spectrum (AS) from now
on, is derived by applying maximum pooling - keeping only
one value every 2 bins - and then normalizing the feature with
respect to the sum of all it’s elements. The second acoustic
feature, termed PCEN spectrogram from now on, is derived by
applying the PCEN method [12] to the previously described
TF representation and then again using maximum pooling to
keep only the frequency bin with the maximum magnitude
every two bins. PCEN was applied on a per-utterance level,
using the parameter values that were recommended for outdoor
applications in [25] and more particularly, e = 1075, a = 0.8,
0 = 10 and r = 0.25. Moreover, for deriving the smooth
version of the TF energy at the denominator of the expression
(see e.g. Eq.(1) in [12]) an auto-regressive process with a factor
a = 0.15 was used.

D. DNN Classifier and Presentation of Classification Results

Various DNN architectures were tested, among which the
most promising appeared to be the one based on Long Short
Term Memory (LSTM) units. The proposed model consists of
a 512 unit LSTM layer followed by a second LSTM layer
with 256 units. The output of the second LSTM layer is fed
to a fully connected layer of 128 units using a relu activation
function, followed by a dropout layer with 0.3 probability and
an output softmax layer. In order to optimize training, we

apply a learning rate decay of 0.4 and tolerance of 5 epochs,
using early stopping with a tolerance of 10 epochs to avoid
overfitting. Both are implemented according to the validation
loss which is calculated every time over a random 5% split of
the available training data. The implementation was made in
Python using the keras toolbox.

Our DNN operates on a fixed feature size and more partic-
ularly on a size of 46 (time-frames) x 103 (frequency bins),
which corresponds to an audio segment of 1.44 s, slightly
shorter than the minimum utterance duration produced by
the VAD-SS. While the classifier outputs one decision per-
segment, decisions for multiple successive segments can be
merged together, when assigned to the positive class, in order
to mark a longer chainsaw time interval. The marked chainsaw
segments are automatically extracted as .wav files of variable
duration and with a naming convention that is indicative of the
temporal location inside the recording. Due to the very low
false-detection-rate achieved by the end-to-end system (shown
in the last Section), this makes it easy for the user to verify the
presence or absence of chainsaw activity in very long audio
recordings with relatively little effort.

III. DATASET

The recordings were obtained from 13 SWIFT ARUs devel-
oped by Cornell University’s Lab of Ornithology, which use an
omnidirectional analog microphone (PUI Audio Inc., Part Nr:
POW-1644L-B-LW100-R). The recordings were obtained in
PCM format using 8kHz sampling rate and 16 bits resolution.
The ARUs were distributed in different protected areas in
Greece (see Table I).

For generating a basic dataset required for training, record-
ings from each ARU were randomly selected and subjected to
the VAD-SS process. The utterances extracted by the segmen-
tation step were then manually labeled into various categories
including that of chainsaw”. It is worth noting that, apart
from the chainsaw sounds, several instances were triggered
by insects, grazing animals such as goats and sheep and also
by dogs and birds. Additional instances were triggered by
aeroplanes and also by cars and trucks that happened to pass
within the acoustic range of each ARU. Finally, there were
several cases of human voice. Since this paper considers a
binary classification problem, chainsaw sounds represent the
Positive class while all other types of sounds populate the
Negative class. The number of utterances detected for the
Positive (Npos) and Negative (Nneg) class can be seen for
each ARU in Table I. It is noted that the total duration of
chainsaw events in the basic dataset was 1.95 h while that of
all other sounds equal to 8.39 h.

Apart from the basic dataset, an augmented dataset is
also considered in this paper. The augmented dataset was
constructed by enriching the basic dataset using the following
approaches;

Resampling: rather than using pitch shifting and time stretch-
ing, well known in the context of data augmentation for
DNN classification [2], [18], we use Matlab’s built-in function
resample in order to downsample and upsample each audio
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Index | Name | Npos | Nneg Location
1 SW2 880 1253 | Evagelistria
2 RP6 800 1130 Rhodope
3 RP11 636 804 Rhodope
4 RP14 205 348 Rhodope
5 PR 155 1204 Prespes
6 RP10 129 789 Rhodope
7 RP15 113 457 Rhodope
8 RP3 76 4047 Rhodope
9 RP1 0 1026 Rhodope
10 RP2 0 128 Rhodope
11 RP4 0 1251 Rhodope
12 SW1 0 1722 Maroneia
13 EVR 0 1005 Evros
Total 2994 | 15164

TABLE 1

NUMBER OF DETECTED UTTERANCES PER ACOUSTIC PATTERN AND ARU.

segment by 6%. Note that the upsampling and downsampling
operations alter both the duration and the pitch of the input
audio segment.

Mixing with external chainsaw sounds: the sound produced
by a chainsaw unit during operation differs depending on the
brand name or the model. To help the classifier gain robustness
to such variability, we searched for additional chainsaw record-
ings in open-access datasets. In particular, chainsaw recordings
were downloaded from freesound (https://freesound.org/) and
from the dataset provided in [26]. Moreover, some additional
audio samples were captured by the first author using a
smartphone device. Most of these recordings were captured
near the chainsaw unit and can thus be characterized as “’clean”
chainsaw recordings. To make this data exploitable for the task
under investigation, the clean chainsaw sounds were converted
to an appropriate audio format (PCM, 8kHz, 16bit) and were
then convolved with an FIR filter whose frequency response
was a descending function of the frequency, providing an
attenuation of 0 dB at 0 Hz and -12 dB at 4kHz. This was
done in order to simulate losses due to air absorption [23]. The
resulting audio files were mixed with portions of background
noise - randomly selected from all 13 ARUs - using two
different mixing weights, one corresponding to an SNR of
0 dB and another to an SNR of -10 dB. This augmentation
approach enriched the dataset with 2.68 hours of additional
chainsaw events. Moreover, the background noise segments
participating in the mixture were also presented for training
as representatives of the Negative class.

IV. EVALUATION

A ”’leave-one-out” approach is considered for validation, in
which case all the utterances extracted from one ARU are
put into test, while the data associated with the rest ARUs is
considered to be available for training. As stated in [2], this
validation approach will better reflect the system’s ability to
adapt to variations of background noise in time (e.g. dawn
vs. dusk) and space (i.e., different sensor location), as well

AS PCEN
Specificity | 95% | 90% | AUC | 95% | 90% | AUC
Basic 543 | 66.7 | 0.837 | 582 | 69.6 | 0.890
Augmented | 73.3 | 82.3 | 0914 | 77.7 | 853 | 0.942
TABLE I

SENSITIVITY (IN %) AND AUC ACHIEVED FOR EACH METHOD USING THE
BASIC AND THE AUGMENTED DATASET. SENSITIVITY RESULTS ARE
SHOWN FOR VALUES OF THE PROBABILITY THRESHOLD THAT RESULT TO
95% AND 90% SPECIFICITY.

as to variations in the characteristics of different ARUs (e.g.
frequency response). The test was repeated for ARUs 1 to 8
while ARUs 9 to 13 - that did not contain any chainsaw events
- were used only for training.The results are averaged across
all 8 ARUs. Doing so, the performance metrics are neutralized
with respect to the number of Positive or Negative samples
associated to each ARU.

The first part of the evaluation involves the DNN clas-
sification performance. The decisions are here taken per-
segment based on a probability threshold p;,., so that a sample
is assigned to the Positive (resp. Negative) class whenever
D > pihr (resp. p < pipr) holds, where p is the probability
of the Positive class, provided by the softmax layer of the
DNN. For the needs of evaluation, for each method, we fix
Dehyr to the value that results to an average specificity equal to
95% and 90%. The average sensitivity and the Area Under
the Curve (AUC) for each method, with and without data
augmentation, can be seen in Table II. The results indicate
that data augmentation improves average sensitivity around
19% for both AS and PCEN (for 95% specificity). Also, as
expected, PCEN achieves a better average sensitivity compared
to AS in all cases.

Additional results are also presented for VAD-SS alone and
for the end-to-end system that consist of both the VAD-SS
and the DNN classifier. To calculate the True Detection Rate
(TDR), we used Praat in order to manually annotate chainsaw
events in randomly selected audio portions (chosen from all
8 ARUs), marking the beginning and end of each chainsaw
event in the recording. TDR is obtained here as the ratio of
the duration of the audio content detected by the algorithms to
that detected by the human expert. In an additional experiment,
False Detection Rate (FDR) is calculated by dividing the
duration of non-chainsaw events detected by the algorithm,
to the total duration of the audio content. Calculation of FDR
is based on eight 12h recordings - one for each ARU put into
test - that did not contain any chainsaw events and that did
not participate in any way in the extraction of the data used
for training. The parameters used for VAD were Tg,.;, = 0.78,
N., = 3 and N; = 23 while for the classifiers, the value of
P Was equal to 0.7 and 0.5 for SA and PCEN respectively.

The TDR and FDR results are shown in Table III. It
can be seen that, in average, VAD-SS lets 86.6% of the
actual chainsaw activity to pass through. Following the DNN
classification step, TDR drops to 73.2% and 73.3% when
using AS and PCEN respectively. On the other hand, in terms
of average FDR, VAD-SS extracts 313.9 seconds per hour
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VAD-SS | VAD-SS+AS | VAD-SS+PCEN
TDR (%) 86.6 73.2 73.5
FDR (s/hour) 313.9 11.4 9.5
TABLE TII

TDR AND FDR RESULTS FOR THE FRONT-END ALONE AND FOR EACH
END-TO-END SYSTEM.

when there is no chainsaw activity. However, passing the DNN
classification step, the FDR drops to 11.4 and 9.5 s/hour when
using AS and PCEN respectively. While this again reflects the
superiority of the PCEN classifier against AS, at the same time
it illustrates the ability of the proposed pipeline to achieve a
very low FDR, which is very crucial considering the huge
amounts of audio content involved in such applications.

We note that due to the fact that our evaluation is based on
real audio recordings, it was not possible to know the SNR
in the test set. To provide however an impression about the
challenging acoustic conditions that the system is facing, we
uploaded in [27] an audio dataset with the recordings that
were used for evaluating the end-to-end system. Each audio
recording is uploaded with a corresponding .textrgrid file, so
that the interested reader can open these files in Praat, navigate
to the marked regions and listen to the actual chainsaw events
in each recording.

V. CONCLUSION

Acoustic detection of chainsaw may greatly assist human
experts towards monitoring of illegal logging activity in pro-
tected areas. In the context of building a system to automati-
cally detect chainsaw events, it is shown that the Summation
of Residual Harmonics method [21], originally developed for
applications related to speech, provides an efficient front end
also for acoustic activity detection in a natural environment.
Combined with a binary DNN classifier at the back end,
we managed to construct a pipeline that detects 73.5 %
of low-SNR chainsaw events at a FDR of 9.5 s/hour. Our
results demonstrate the advantage gained by using PCEN as
a feature pre-processing step and highlight the importance
of data augmentation in the classification performance. The
presented system can be freely downloaded in the form of
python code [20].
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