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Abstract—We have developed an unsupervised anomalous
sound detection method for machine condition monitoring that
utilizes an auxiliary task — detecting when the target machine
is active. First, we train a model that detects machine activity by
using normal data with machine activity labels and then use the
activity-detection error as the anomaly score for a given sound
clip if we have access to the ground-truth activity labels in the
inference phase. If these labels are not available, the anomaly
score is calculated through outlier detection on the embedding
vectors obtained by the activity-detection model. Solving this
auxiliary task enables the model to learn the difference between
the target machine sounds and similar background noise, which
makes it possible to identify small deviations in the target sounds.
Experimental results showed that the proposed method achieves
a better performance than the conventional method particularly
when the environmental noise contains sounds similar to the tar-
get machine sound. In addition, the proposed method improved
the anomaly-detection performance of the conventional method
complementarily by means of an ensemble.

Index Terms—Machine health monitoring, anomalous sound
detection, self-supervised learning, machine activity detection

I. INTRODUCTION
Anomalous sound detection (ASD) is a task to identify

whether a given sound is normal or anomalous. Since mechan-
ical failure often causes machines to emit anomalous sounds,
ASD has attracted attention for its application to machine
condition monitoring [1], an essential technology for artificial
intelligence-based factory automation. ASD is typically con-
ducted in an unsupervised manner, meaning that only normal
sounds are used for training. This is because anomalous sounds
occur in rare situations and are highly diverse, making them
almost impossible to collect. Most methods for unsupervised
ASD (UASD) first learn a model of the collected normal
sounds [2]–[7]. They then calculate the anomaly score of
an observed sound on the basis of how well the sound fits the
learned model. The sound is identified as anomalous if the
score exceeds a preset threshold.

UASD for machine condition monitoring is often conducted
in factories under noisy conditions, where the environmental
noise tends to degrade the performance since the difference
between normal and anomalous sounds is relatively small.
This phenomenon is more pronounced when the environmental
noise is similar to the target machine sounds. Recent methods
for solving the noise problem [8]–[13] have utilized models
that classify the sounds of the target machine and those of
other similar machines, in contrast to the conventional UASD
methods, which enables them to distinguish minor deviations

between normal and anomalous sounds. An ensemble of these
methods with other UASD methods has exhibited a good
performance. However, it is extremely labor-intensive to find
other machines similar to the target machine and then to record
those sounds as training data in practical situations.

In this paper, we propose a UASD method that does not
require sounds of other machines similar to the target machine.
To solve the UASD task, the proposed method utilizes a model
trained to solve an auxiliary task of detecting when the target
machine is active. First, we train an activity-detection model
that estimates when the target machine is active. Then, in
the inference phase, we calculate the anomaly score by using
the activity-detection error of the activity-detection model.
Since the activity-detection model is trained to distinguish
the sounds of the target machine from environmental noise, it
can detect anomalous sounds especially when environmental
noise is similar to the sounds of the target machine. Moreover,
to enable inference without ground-truth machine activity
labels, we propose applying an outlier detection method to
the embeddings extracted from the activity-detection model.

II. RELATED WORK
A. UASD methods

Various UASD methods have targeted machine condition
monitoring. Most of them learn a model of the normal
sounds and then detect sounds that deviate from the learned
model as anomalous. Several models have been used for
learning the normal model, including autoencoders (AEs) [2],
variational autoencoders [3], long short-term memories [5],
transformers [6], normalizing flows [4], and Gaussian mixture
models (GMMs) [7]. With these models, the anomaly score
A(x;θ) for a given input x is calculated in the inference
phase, where θ is the parameter of the model. If A(x;θ) ex-
ceeds a predefined threshold, input x is detected as anomalous.
Extensions to AEs and VAEs have also been proposed, such as
changing the reconstruction task to an interpolation task [14],
which improves the detection performance for non-stationary
sounds, or cascading various types of dereverberation methods
before the model [15]. All of these methods except the final
one [15] learn the normal model without distinguishing the
target machine sounds from environmental noise, and as a
result, the existence of environmental noise degrades the ASD
performance.

B. Self-supervised classification-based ASD methods
In Task 2 of Challenges on Detection and Classification of

Acoustic Scenes and Events (DCASE Challenge) 2020 and
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2021 [16], [17], many methods based on learning classifica-
tion models that can be interpreted as a variation of outlier
exposure [18] performed well. These methods train a model
that identifies the machine ID for a given audio clip (sounds of
several different individuals were provided for each machine
type, with the individuals tagged as IDs), and the classification
error is used as the anomaly score [8]–[13]. A normalizing-
flow-based method using data from multiple machine IDs has
also been proposed [19]. These methods tend to achieve better
performances than unsupervised methods thanks to learning
a good decision boundary between normal and anomalous
samples by using the sounds from other machine IDs as proxy
outliers. However, they need the sound of each class of the
classification task to be similar to achieve these results [19],
[20]. While this is possible in competitions where sounds for
multiple machine IDs are provided for each machine type, in
practical use it is quite costly to find appropriate machines and
record their sounds.

III. PROBLEM STATEMENT
In this paper, we tackle the UASD task, i.e., anomalous

sound detection under the condition that only normal sounds
are available in the training phase. Unlike DCASE 2020 and
2021 Challenge Task 2, we consider a case where sounds for
different individuals of the same machine type are unavailable.
We also make the following assumptions.

1) The target machine repeatedly starts and stops during
sound recording. We call the time when the machine is
running active and the time when it is stopped inactive.
During the active time, both the target machine sound
and environmental noise are recorded, while during the
inactive time, only the noise is recorded.

2) The training data contains information about when the
target machine started and stopped running (called ac-
tivity labels). If machine activity can be automatically
recorded, the activity labels will be available in the
training and inference phases. Even if they are not
automatically recorded, the activity labels are available
in the training phase because they can be annotated by
hand.

IV. PROPOSED METHOD
A. Basic concept

The basic concept of the proposed UASD method is to use
a model trained to solve an auxiliary task of detecting when
the target machine is active. We call this model the “activity-
detection model” and train it by using normal sounds of the
target machine with ground-truth activity labels. If the activity-
detection model fails to detect the active time frames in the
inference phase, we regard the sound clip as anomalous. The
activity-detection model is expected to learn a good decision
boundary between the normal sounds of the target machine
and other sounds, including anomalous sounds. The proposed
UASD method based on activity detection works especially
well when the environmental noise is similar to the target-
machine sound. This case is likely to occur in factories because
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Fig. 1: Overview of proposed UASD-SAD and UASD-OD-
SAD.

many machines are often similar to the target machine in
operation.

B. Case in which activity labels are available in inference
1) UASD based on supervised activity detection (UASD-

SAD): As shown in Fig. 1, the activity-detection model
consists of two components: a feature embedding model
and a frame-wise classification model. First, F -dimensional
frame-wise feature vectors (such as log-mel spectrograms)
are extracted from sound clips and L consecutive features[
x1, . . . ,xL

]
, xl ∈ RF (l = 1, . . . , L) are taken as input.

The task is to estimate the activity labels [y1, . . . , yL], where
yl = 1 if the target machine was active in the l-th time frame
and yl = 0 if not. Note that only a few feature frames are
input into this model, not the entire audio clip. The aim is
to make activity detection difficult enough to be an auxiliary
task for anomaly detection. If we input the whole audio clip,
the activity will be detected precisely for both normal and
anomalous sounds, and anomaly detection will not work.

The feature embedding model extracts L embedding vectors[
x̄1, · · · , x̄L

]
from input as[
x̄1, . . . , x̄L

]
= f (x1, . . . ,xL;θf ) , (1)

where θf denotes the parameters of the feature embedding
model f . This model can be a convolutional neural network
(CNN), a gated recurrent unit, or any other appropriate model.
The classification model g then estimates the activity label of
each frame from the feature embeddings, as

ȳl = g(x̄l;θg), l = 1, . . . , L, (2)

where ȳl ∈ (0, 1)2 and θg denotes the parameters of the
classification model g. The first and second component of ȳl

can be interpreted as the posterior probability of the l-th time
frame being inactive and active, respectively. Typically, g can
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be given as a combination of a linear transform and a softmax
function as

g(x̄;θg) =

 exp(wT
1 x̄)

exp(wT
1 x̄)+exp(wT

2 x̄)
exp(wT

2 x̄)
exp(wT

1 x̄)+exp(wT
2 x̄)

 , (3)

where θg = {w1,w2}. Finally, the detection error is calcu-
lated as the cross entropy loss between

[
ȳ1, . . . , ȳL

]
and the

machine activity labels as

L
([
x1, . . . ,xL

]
;θ

)
= −

L∑
l=1

log
(
[ȳl]yl+1

)
, (4)

where θ = {θf ,θg} and [y]i denotes the i-th component of y.
The detection error is used both as the cost function used for
training the model and as the anomaly score for an obtained
sound. Since this method utilizes a supervised learning task of
activity detection, we refer to it as UASD based on supervised
activity detection (UASD-SAD).

2) Overall cost function and anomaly score for a sound
clip: We describe the overall cost function for a given training
dataset and the anomaly score for a given sound clip. Both are
calculated using a sliding window to extract L consecutive
frames of feature vectors, which are then used as the input of
the activity-detection model.

Assume that the training data consists of K sound clips
of normal data D = {X(k)}Kk=1, where each sound clips
consists of Tk(≥ L) frames of feature vectors: X(k) =[
x
(k)
1 , . . . ,x

(k)
Tk

]
. For the input of the activity-detection model,

L consecutive feature vectors starting from index t are denoted
as

X
(k)
t =

[
x
(k)
t , . . . ,x

(k)
t+L−1

]
. (5)

Using this notion, we define the overall cost function for
training the activity-detection model as

Lcost (D;θ) =
1

K

K∑
k=1

1

Tk − L+ 1

Tk−L+1∑
t=1

L
(
X

(k)
t ;θ

)
.

(6)

In the same way, we define the anomaly score for a given
sound clip X =

[
x1, . . . ,xT

]
as

A1 (X;θ) =
1

T − L+ 1

T−L+1∑
t=1

L (Xt;θ) . (7)

C. Case in which activity labels are unavailable in inference
When the machine activity is not automatically recorded, the

anomaly score defined in (7) cannot be computed. To deal with
this situation, we propose training an outlier detector with the
embedding vectors (which are the outputs of f ) of the training
data after the activity-detection model has been trained. For
example, we can use a GMM or an AE as an outlier detector.
Here, the anomaly score for X is calculated as

A2 (X;θf ,θo) =
1

(T − L+ 1)L

T−L+1∑
t=1

L∑
l=1

Lo(x̄
t
l ;θo), (8)

TABLE I: Requirements for activity labels.
Method Training Inference
(i) UASD w/ activity labels Yes Yes
(ii) UASD-SAD Yes Yes
(iii) UASD w/o activity labels No No
(iv) UASD-OD-SAD Yes No

where x̄t
l denotes the l-th embedding vector of f(Xt,θf ), θo

denotes the parameters of the outlier detector, and Lo(x̄;θo)
denotes the anomaly score for the outlier detector given an
embedding vector x̄. Here, x̄t

l is expected to be close to either
w1 or w2 in (3). Then, if a feature vector at a time frame
that includes anomalous sounds is provided to the activity-
detection model, x̄t

l would be dissimilar to both vectors and
the anomaly score for this embedding vector would be high.
Thus, anomalous sounds will have high anomaly scores. In this
way, UASD can be conducted without using activity labels in
the inference phase. We refer to this method as UASD based
on outlier detection using supervised activity detection (UASD-
OD-SAD).

V. EXPERIMENTS
A. Experimental conditions

To investigate the effectiveness of the proposed method
under noisy conditions, we compared its performance with
that of a conventional UASD method using a machine sound
dataset containing environmental noise.

For evaluation, we used the slide rail dataset included in
the MIMII DUE dataset [21], as it satisfies our assumption
that the input sounds contain both active and inactive sections
of the target machine. Furthermore, slide rails are widely
utilized in factories, and detecting their breakdown is critically
important. We used the data in sections “00” and “01” in
the development dataset, which contain different sounds. We
annotated the active sections of the slide rail dataset for both
the training and test data. To evaluate each method under low-
signal-to-noise ratio (SNR) conditions, we mixed the original
dataset with two types of environmental noise each recorded in
different factories (Factory A and B). The SNR was between
6.0 dB and −12.0 dB, where the mixing procedure was the
same as that previously reported [21]. Note that the original
slide rail dataset already includes environmental noise, so the
SNR given here is not the SNR between the clean slide rail
sound and other noise. Instead, it is the SNR between the
sounds of the original dataset and the additionally mixed
in factory noise. Since the SNR of the original dataset was
−12 dB, the actual SNR of the data used in our experiment
was always below -12 dB. The input for each method was 128-
dimensional log-mel spectrograms computed with a short-time
Fourier transform frame size of 64 ms and a hop size of 50%.

We consider two scenarios: one in which activity labels are
available in inference, and one in which they are not. For
the first scenario, we compared the proposed method, UASD-
SAD, with the conventional AE-based method using the activ-
ity labels (UASD w/ labels). In UASD w/ labels, by using the
activity labels, the AE was trained only with the feature vectors
of active time. In the evaluation phase, the mean reconstruction
error of the feature vectors of active time was used as the
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(a) Normal sound clip

(b) Anomalous sound clip
Fig. 2: Example of log-mel spectrogram (upper parts of
(a), (b)) and activity detection (lower parts of (a), (b)) for
UASD-SAD (section 00, Factory A noise, SNR = 6.0 dB).
Gray areas show ground-truth activities, and each line repre-
sents the estimated activities for L = 5 consecutive frames.

anomaly score. For the second scenario, we compared the
proposed method, UASD-OD-SAD, with the conventional AE-
based method without the activity labels (UASD w/o labels).
In UASD w/o labels, the AE was trained with all the feature
vectors, including features of both active and inactive time.
The anomaly score was also obtained by computing the mean
reconstruction error of all the feature vectors. The architecture
of the AE was the same as reported [21]: five fully connected
layers for the encoder and the decoder with batch-norm layers
located between every pair of layers. Each input contained five
consecutive frames of extracted feature vectors concatenated
to a single 640-dimensional vector.

We used a CNN-based architecture for the activity-detection
model. The feature vectors of five consecutive frames were
extracted to form a two-dimensional time-frequency represen-
tation. The feature vectors were input to a CNN layer and then
by three residual CNN blocks. Each residual block consisted
of two CNN layers and a residual connection, where each
layer had 32 channels. The size and stride of the convolution
kernel were 3×3 and 1. A fully connected layer then followed
the CNN layers, which was applied to each feature of different
time frames separately and identically. The architecture of this
feature embedding model was designed so that the number of
layers was approximately the same as the AE model, thus
ensuring that the representation capacity of the two models
would be close to each other. We used (3) for the activity-
detection model and a GMM for the outlier-detection model.
The number of mixture components in the GMM was 5. All
neural networks were optimized by Adam [22]. The AEs were
trained for 100 epochs, and the activity-detection models were
trained for 20 epochs. Note that each method has different
requirements for the activity labels, as shown in Table I.

For the first scenario, we evaluated an ensemble of UASD

TABLE II: AUC values for anomaly detection (%).
(a) Methods that require activity labels in inference.

Noise type Factory A Factory B
Method SNR [dB] 6.0 0 -6.0 -12.0 6.0 0 -6.0 -12.0

Section 00
(i) UASD w/ labels 76.6 70.8 59.5 50.7 73.4 66.3 58.6 51.0
(ii) UASD-SAD 73.0 70.7 62.8 58.7 68.9 68.9 68.8 55.1
Ensemble of (i) and (ii) 81.5 73.6 58.3 51.5 77.7 72.1 62.7 52.1

Section 01
(i) UASD w/ labels 82.2 77.7 72.4 63.3 82.3 76.7 67.8 60.5
(ii) UASD-SAD 81.6 73.9 63.5 53.7 80.0 74.3 64.2 53.2
Ensemble of (i) and (ii) 81.0 81.5 74.9 58.5 82.1 82.6 72.3 57.5

Average
(i) UASD w/ labels 79.4 74.3 66.0 57.0 77.9 71.5 63.2 55.8
(ii) UASD-SAD 77.3 72.3 63.2 56.2 74.5 71.6 66.5 54.2
Ensemble of (i) and (ii) 81.3 77.6 66.6 55.0 79.9 77.4 67.5 54.8

(b) Methods that do not require activity labels in inference.
Noise type Factory A Factory B

Method SNR [dB] 6.0 0 -6.0 -12.0 6.0 0 -6.0 -12.0
Section 00

(iii) UASD w/o labels 70.3 64.9 55.8 51.7 70.2 61.5 55.4 51.2
(iv) UASD-OD-SAD 76.2 66.5 56.3 52.2 70.1 68.7 64.7 51.7
Ensemble of (iii) and (iv) 77.5 68.3 57.0 52.3 74.6 67.7 60.7 51.7

Section 01
(iii) UASD w/o labels 80.2 74.0 65.9 57.4 79.5 72.0 63.8 57.0
(iv) UASD-OD-SAD 71.4 72.6 57.4 47.1 72.1 69.1 62.1 47.5
Ensemble of (iii) and (iv) 80.5 78.3 68.2 53.9 81.0 78.1 68.2 53.7

Average
(iii) UASD w/o labels 75.3 69.5 60.9 54.6 74.9 66.8 59.6 53.8
(iv) UASD-OD-SAD 73.8 69.6 56.9 49.7 71.1 68.9 63.4 49.6
Ensemble of (iii) and (iv) 79.0 73.3 62.6 53.1 77.8 72.9 64.5 52.7

w/ labels and UASD-SAD. For the second scenario, we
performed an ensemble of UASD w/o labels and UASD-OD-
SAD. To ensemble different methods, the anomalous score
of each model was first standardized and then summed up to
calculate the overall anomaly score. The standardization of the
anomaly score A(X) of a test data X was conducted by

Ã(X) = (A(X)− µ) /
√
σ2 + ϵ, (9)

where µ and σ2 are the mean and the variance of A(X) of the
training data, respectively, and ϵ is a constant positive value.
We used ϵ = 1000 for UASD-SAD since the variance of the
anomaly score for the validation data tended to be much larger
than σ2 when we conducted cross-validation. We used ϵ = 0
for all the other methods.

B. Results
Examples of the activity detection of UASD-SAD are

provided in Fig. 2. As we can see, activity was detected
correctly for normal sounds, while there were many errors
in activity detection for anomalous sounds. Therefore, the
proposed method is expected to detect anomalies based on
the error of activity detection.

Table II shows the area under the receiver operating char-
acteristic curve (AUC) for anomaly-detection performance.
First, in most conditions, the methods that require the activity
labels in the inference phase had higher AUC values than
those that do not require the activity labels. Next, in many
of the noise conditions in Section 00, UASD-SAD showed
higher AUC values than UASD w/ label, but in Section 01,
UASD w/ label showed higher AUC values. Also, in most of
the noise conditions in Section 00, UASD-OD-SAD showed
higher AUC values than UASD w/o label, but in Section
01, UASD w/o label showed higher AUC values. One of
the reasons for the conflicting results obtained in Section 00
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and Section 01 is most likely the difference of the similarity
between the target machine sound and the environmental noise.
The proposed method is expected to show high performance
when the target machine sound is somewhat similar to the
noise. On the other hand, when the target machine sound is
not similar to the noise at all, anomaly detection cannot be
performed well because the auxiliary task, activity detection,
is too easy. In fact, the noise of factories A and B contained
sounds similar to the slide rail in Section 00 but not to the slide
rail in Section 01. Overall, the proposed methods achieved a
better performance than the conventional methods when the
noise was similar to the target machine sound, which is a
condition that degraded the performance of the conventional
methods substantially. This advantage is crucial in practical
situations, since factories often run several similar machines
in the same area. In this case, environmental noise tends to be
similar to the target machine sound.

Also, the results showed that the ensembles achieved higher
AUC values than the conventional methods for both sections
00 and 01, except for the SNR of −12.0 dB. These results indi-
cate that the proposed method is also useful for improving the
anomaly-detection performance of the conventional methods
complementarily by means of an ensemble. It is also suggested
that the proposed method does not contribute to performance
improvement when the SNR is extremely low.

VI. CONCLUSION
We proposed a method for anomalous sound detection based

on machine activity detection. The proposed method calculates
the anomaly score based on the error of activity detection if
the ground-truth activity labels are available in the inference
phase. If these labels are not available, it performs outlier
detection for the embeddings obtained in the activity-detection
model. Experimental results indicate that the proposed method
achieves a better performance than the conventional method
particularly when the environmental noise contains sounds
similar to the target machine sound, which is a crucial advan-
tage in practical applications. In addition, the proposed method
improved the anomaly-detection performance of the conven-
tional method complementarily by means of an ensemble.
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