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Abstract—To develop a sound-monitoring system for machines,
a method for detecting anomalous sound under domain shifts
is proposed. A domain shift occurs when a machine’s physical
parameters change. Because a domain shift changes the distribu-
tion of normal sound data, conventional unsupervised anomaly
detection methods can output false positives. To solve this
problem, the proposed method constrains some latent variables of
a normalizing flows (NF) model to represent physical parameters,
which enables disentanglement of the factors of domain shifts
and learning of a latent space that is invariant with respect to
these domain shifts. Anomaly scores calculated from this domain-
shift-invariant latent space are unaffected by such shifts, which
reduces false positives and improves the detection performance.
Experiments were conducted with sound data from a slide rail
under different operation velocities. The results show that the
proposed method disentangled the velocity to obtain a latent
space that was invariant with respect to domain shifts, which
improved the AUC by 13.2% for Glow with a single block and
2.6% for Glow with multiple blocks.

Index Terms—Machine health monitoring, Anomalous sound
detection, Anomaly detection, Semi-supervised disentanglement
learning, Normalizing flows

I. INTRODUCTION

As the number of skilled maintenance workers decreases
worldwide, the demand for automatic sound-monitoring sys-
tem has been increasing. Such systems aim to detect anoma-
lous states of a machine from its sound.

Because anomalous sound data can rarely be obtained in
practice, unsupervised anomaly detection methods are often
adopted for these systems [1], [2]. Neural generative models
such as a variational autoencoder (VAE) [3] and a normalizing
flows (NF) [4], [5] are the most commonly used methods
for unsupervised anomaly detection because of their high
detection performance. These methods try to detect data with
different distributions from normal data, without using anoma-
lous data. However, not only a machine’s anomalous states
but also changes in its physical parameters (domain shifts)
or aging can affect the distributions of the normal data, which
induces false positives when using unsupervised methods. Ag-
ing causes changes in data distributions over a long period of
time, and these changes can be handled by continual learning
or incremental learning [6]. On the other hand, domain shifts,
which are the focus in this paper, can induce sudden, huge
differences in data distributions, because physical parameters
can change within a short period of time. Moreover, because

these physical parameters are often numerical values, it is
impossible to collect a sufficient amount of data for all possible
parameters. Accordingly, we need an unsupervised method
that can handle domain shifts while requiring sound data with
only a few sets of physical parameters.

In this paper, we develop an unsupervised anomalous sound
detection method that can handle domain shifts due to changes
in physical parameters. Our idea is to disentangle the factors of
domain shifts and perform anomaly detection by using a space
that is invariant with respect to these shifts. Specifically, we
propose to constrain a neural generative model so that some
of the latent variables represent factors of domain shifts and
other latent variables represent components that are invariant
with respect to domain shifts. As a result, the anomaly scores
calculated using the latter latent variables are not affected
by domain shifts but only by other variation factors such as
a machine’s anomalous state, which can lead to fewer false
positives.

II. PROBLEM STATEMENT

Anomalous sound detection is the task of identifying
whether a machine is normal or anomalous according to
an anomaly score calculated by a trained model from the
machine’s sound. Each piece of input sound data is determined
as anomalous if its anomaly score exceeds a threshold value.
We consider unsupervised anomalous sound detection, in
which only normal sound is available for training. We also
assume that a machine’s physical parameters are only available
during training. This assumption is realistic because sensors to
measure the physical parameters may not be available in real-
world operation, depending on environmental conditions. This
problem setting is similar to that of DCASE 2021 Challenge
Task 2 [7], in which machines have up to three different
numerical and physical parameters that cause domain shifts.

III. RELATION TO PRIOR WORK

A. Semi-supervised disentanglement learning

Learning disentangled representations has been at the core
of representation learning research [8]. Unsupervised disentan-
glement learning methods, in which a VAE with regularizers
is commonly used to encourage disentanglement, have mainly
been investigated [9]. However, it has been pointed out that
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unsupervised disentanglement is impossible without induc-
tive biases [10]. Semi-supervised disentanglement learning
methods, on the other hand, explicitly use a few labeled
pieces of data to disentangle factors of variation [11], [12].
Locatello et al. [11] trained a VAE with an added loss term to
incorporate label information during training. Esser et al. [13]
used an NF to learn transformations between latent spaces
and semantic concepts. Esling et al. [14] used an NF to
disentangle categorical tag information from a latent space.
Our proposed method is a semi-supervised disentanglement
learning method that uses an NF to disentangle numerical and
physical parameters without an additional loss term.

B. Anomalous sound detection under domain shifts

For DCASE2021 Challenge Task 2, we published the
MIMII DUE dataset [15], the first dataset for anomalous sound
detection under domain shifts. In this dataset, we changed
physical parameters between the source and target domain
to induce domain shifts. The source domain data and a few
samples from the target domain data were available during
training. The top-ranked approaches in the challenge first used
autoencoder-based methods or classifiers to extract embed-
dings from the data and then used likelihood-based methods
like a Gaussian mixture model (GMM) to calculate anomaly
scores from the embeddings. Kuroyanagi et al. [16] proposed
to calculate anomaly scores by training a GMM for each
domain on the autoencoder’s reconstruction errors. Sakamoto
et al. [17] attained the highest scores for the target data by
estimating the mean of the target data under an assumption
that the mean changes between the source and target domains.
Wilkinghoff [18] trained a classifier that discriminates each set
of physical parameters to obtain embeddings. Our proposed
method does not require the target domain data for training, as
it explicitly uses numerical and physical parameters to obtain
a domain-shift-invariant latent space that does not change
between the source and target domains.

IV. CONVENTIONAL APPROACH

A. Semi-supervised disentanglement learning using VAE

Locatello et al. [11] proposed a semi-supervised disen-
tanglement learning method to disentangle the factors of
variations represented by a few labeled data instances, denoted
as y. They modified the loss function of VAE to incorporate
supervision:

L = −Eqϕ(z|x)[log pθ(x|z)] + β(DKL(qϕ(z|x)))
+ γ Ex,y[R(qϕ(y|x))],

(1)

where x denotes the input data, z is the latent variables, β is a
hyperparameter introduced in [9], γ is another hyperparameter,
and R(·) is a function to induce supervised disentanglement.

B. Unsupervised anomaly detection using NF

Among neural generative models for unsupervised anoma-
lous sound detection, an NF evaluates the exact likelihood of
the input data and has shown better detection performance than
other models, including a VAE [19].

The NF models a series of invertible transformations f =
f1 ◦f2 ◦· · ·◦fK between an input data distribution p(x) and a
known distribution p(z). The log likelihood of the input data
can be calculated as

log p(x) = log p(z0) +

K∑
i=1

log |det( dzi
dzi−1

)|, (2)

zi = fi(zi−1), (3)

where z0 is a latent vector that follows a known distribution
such as the standard isotropic gaussian N(0, 1), and zi (i =
1, 2, · · · ,K) is an intermediate latent vector. The anomaly
score can be calculated as the negative log likelihood (NLL)
of the input data [20]–[22],

a(x) = − log p(x). (4)

The NF has mainly been used as an unsupervised method,
which fails to handle distribution changes due to domain shifts.
Specifically, when a machine’s physical parameters change and
the distribution of its normal sound data changes, unsupervised
methods can output high anomaly scores, leading to false
positives.

V. PROPOSED APPROACH

A. Learning of domain-shift-invariant latent space for
anomaly detection using NF

To handle distribution changes due to domain shifts, we
propose to disentangle the factors of domain shifts and con-
struct a domain-shift-invariant latent space for anomaly score
calculation. For this purpose, we use an NF because of its high
expressive power.

First, we train an NF model to obtain domain-shift-invariant
representations. As long as the latent variables follow an
isotropic Gaussian, if we let some latent variables zd represent
a factor of domain shifts, then the latent space constructed by
other latent variables zc should be invariant with respect to that
factor. To make zd represent a numerical and physical param-
eter v that causes domain shifts, we constrain zd to follow a
Gaussian distribution N(kv, 1), where k is a hyperparameter
to induce stable training of the model. If a set of sound data
with different values of the parameter v is available, then the
model can learn to map input data into a latent space that
shifts linearly with v. This forces some latent variables zd to
represent the physical parameter v while making other latent
variables zc invariant to that parameter.

Using the obtained domain shift-invariant latent space, we
then calculate anomaly scores that are unaffected by domain
shifts. The likelihood of the latent variables, p(z0), can be
factorized as

log p(z0) = log p(zc) + log p(zd). (5)

From (2) and (5), the likelihood of input data x can be written
as:

log p(x) = log p(zc)+ log p(zd)+

K∑
i=1

log |det( dzi
dzi−1

)|, (6)
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Because the latent variables zd are constrained to represent a
factor v of domain shifts, they cannot be used for calculating
domain shift-invariant anomaly scores. Also, the third term of
(6) can be domain shift-dependent. Accordingly, the anomaly
score in (4) can be calculated using only the first term of (6):

a(zc) = − log p(zc). (7)

B. Multi-scale architecture in NF for learning disentangled
reprensentations

A multi-scale architecture in an NF was first introduced in
[23] and has since been commonly used in other NF models
[24].

To apply our method in a multi-scale architecture, we
modify only the last block of the architecture. Let c, h, w
denote the channel size, height, and width of a feature vector,
respectively, and assume that the architecture consists of N
blocks. In the ith block (i = 1, 2, · · · , N − 1), an input xi

with dimensions (c, h, w) is squeezed to give a feature with
dimensions (4c, h/2, w/2). After some flow transformations,
half the channels are used as the input xi+1 to the next block,
while the other channels, zic, are factored out; here, zic is
constrained to follow N(0, 1). In the last block, we constrain
half the channels, zd, to follow N(0, 1) and the others, zNc, to
follow N(kv, 1). Because only the latent variables in the last
block are constrained to represent a factor of domain shifts, the
model has to propagate domain-shift-dependent components to
the last block. As a result, the latent variables factored out at
each block can represent domain-shift-invariant components
at each different scale. The shift-invariant latent space zc is
obtained by concatenating the zic from all the blocks:

zc = (z1c, ..., zNc). (8)

The anomaly score is then calculated using (7).

VI. EXPERIMENTS

A. Dataset

We prepared two slide rails with the same machine ID,
which operated with a designated velocity of 50–750 mm/s
and a distance of 100–500 mm. Figure 1 shows examples of
log-mel spectrograms of the sound with different operation
velocities.

We first recorded normal sound data with 15 different
velocities (50, 100, ..., and 750 mm/s) and three different
distances (100, 250, and 500 mm), giving 45 different physical
parameter sets in total. Each parameter set had 10 sound clips,
with each clip consisting of a 10-second single-channel 16-
kHz recording. We used data with different velocities for the
training and test data: seven of the 15 velocities (100, 200, 300,
400, 500, 600, and 700 mm/s) were used for the training data,
while other velocities were used for evaluating the model’s
ability to disentangle velocities that were not included in the
training data.

To evaluate the anomaly detection performance, we also
recorded pairs of normal and anomalous sound data. Both the
normal and anomalous sound data had 15 different velocities
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Fig. 1. Examples of log-mel spectrograms with different operation velocities
(mm/s) and an operation distance of 500 mm.

and a fixed distance of 500 mm, with 10 sound clips for each
velocity. The normal sound data was recorded using the same
slide rail as the one used for the training data. The anomalous
sound data was recorded using the other slide rail.

B. Experimental conditions

We used Glow [24] for the NF model because it is often
chosen in out-of-distribution detection and anomaly detection
tasks [19], [25]. We also used a VAE with the loss function
given in (1) to compare the disentanglement performance with
that of our proposed method.

To obtain input features, we applied the same procedure for
Glow and the VAE. Each frame of the log-mel spectrograms
was first computed with a length of 1024, a hop size of 512,
and 128 mel bins. At least 313 frames were generated for each
sound clip, and 64 consecutive frames with 48 overlappings
were concatenated to generate the input features.

We prepared two Glow models with and without the multi-
scale architecture. The Glow model with the multi-scale ar-
chitecture (multi-scale Glow) had three blocks with five flow
steps in each block, and each flow step had three CNN layers
with 32 hidden layers. Therefore, z0 had 16 channels and zd
had 8 channels. For the Glow model without the multi-scale
architecture (single-scale Glow), the only difference from the
multi-scale Glow was it had just one block. When using the
proposed method, we constrained half the channels of the last
block to follow N(kv, 1), as described in Sec. V-B. In contrast,
the single-scale Glow and the multi-scale Glow without the
proposed method were trained by constraining all the latent
variables to follow N(0, 1).

The VAE model had 10 linear layers with 128 dimensions,
except for the fifth layer, which had eight dimensions. The first
dimension of the latent variables was constrained to represent
the velocity v, and R(·) in (1) was calculated by taking
the mean squared error between the value of the first latent
variable and the actual velocity. For the hyperparameters we
set β = 1 and γ = 0.01.

All models were trained for 1000 epochs by using the Adam
optimizer [26] with a learning rate of 0.0001 and a batch size
of 128.
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Fig. 2. Means of the latent variables for unseen velocities.

TABLE I
AUCS (IN %) OF SOUND DATA WITH THE SEEN VELOCITIES (VELOCITIES
IN THE TRAINING DATA), UNSEEN VELOCITIES (VELOCITIES ONLY IN THE

TEST DATA), AND ALL VELOCITIES.

Method Seen
velocities

Unseen
velocities

All
velocities

VAE using
reconstruction error 52.9 57.5 55.2

VAE using KLD 47.0 52.4 49.9
VAE with loss in (1) 64.8 60.3 62.3
Single-scale Glow 89.1 72.7 78.6
Single-scale Glow using
proposed method 97.7 87.3 91.8

Multi-scale Glow 100.0 86.0 91.9
Multi-scale Glow using
proposed method 100.0 89.9 94.5

C. Results

We first estimated the unseen velocities from the trained
models to investigate whether these velocities could be disen-
tangled. For both the single-scale and multi-scale Glow, the
estimated velocity was calculated by taking the mean of zd
in the last block. For the VAE, the first dimension of the
latent variables was used. The velocities estimated from input
features in the same sound clip were averaged to give one
estimation for each clip. Figure 2 shows the estimation for
each unseen velocity. The multi-scale Glow showed the best
performance, especially for the lower velocities of 50–250
mm/s and the higher velocities of 650 and 750 mm/s. Though
the estimates tended to be larger for the medium velocities of
350–550 mm/s, they still showed positive correlations with the
actual velocities. On the other hand, the VAE failed to estimate
the higher velocities. This result shows that the Glow models
were better at disentangling the factors of variations with their
higher expressive power. The multi-scale Glow gave better
estimation results than the single-scale Glow, especially for
higher velocities. This may be because the multi-scale Glow
has more learnable parameters and the multi-scale architecture
enables extraction of representations at different scales.

We then calculated the anomaly scores for each sound clip.
To evaluate the detection performance of each model, we
calculated the area under the receiver operating characteristic
curve (AUC) for the seen velocities, unseen velocities, and all
velocities. We used the same model for all of the velocities.
For the VAE, we calculated three different scores: the recon-

struction error (the first term in (1)) from a model trained
using a conventional loss (first and second terms in (1)), the
Kullback-Leibler divergence (KLD, second term in (1)) from
the same model, and the KLD from a model trained using
the loss in (1). For Glow, we used single-scale and multi-
scale versions with and without the proposed method. Table
I lists the results, which indicate that the proposed method
improved the AUC by 13.2% for the single-scale Glow and
2.6% for the multi-scale Glow. In addition, the Glow models
outperformed all the VAE models, even though VAE with the
loss in (1) outperformed the other VAEs with the conventional
loss. The proposed method showed greater improvement in the
single-scale Glow than in the multi-scale Glow. This may be
because the number of learnable parameters in the single-scale
Glow was not enough to learn the distribution of the normal
data, which made the effect of using the domain-shift-invariant
latent space more evident.

Figures 3 and 4 show the anomaly scores for data using
the single-scale Glow with the conventional method and the
proposed method, respectively. In Fig. 3, the anomaly scores
of the normal sound data with unseen velocities, especially
for 50, 250, 450, and 750 mm/s, were higher than those of
the normal and even the anomalous sound data with seen
velocities. Because the normal data with unseen velocities
cannot be used for training, the anomaly detector may detect
normal samples with these velocities as anomalous samples.
On the other hand, in Fig. 4, the normal sound data with
unseen velocities showed about the same scores as with
seen velocities, except for 50 mm/s. This result indicates
that the proposed methods can lower the anomaly scores of
normal sound data with unseen velocities by disentangling the
operation velocity. For 50 mm/s, because the distribution of
the normal data can significantly change around this lower
velocity, the anomaly score for the normal data was higher
with this velocity than with the other velocities. The anomaly
scores of the anomalous sound data became higher for several
velocities with the proposed method. As the model is trained
to disentangle velocities by using the normal data, it may
have disentangled components that that did not represent the
velocity of the anomalous sound data, thus raising the anomaly
scores.

VII. CONCLUSION

We proposed an anomalous sound detection method that
can handle domain shifts. The proposed method uses an NF
model to disentangle the numerical and physical parameters of
a machine, which gives a domain-shift-invariant latent space.
Experimental results demonstrated that the proposed method
disentangles the factors of domain shifts better than a VAE
does, thus enabling improvement in the anomaly detection
performance for data with unseen physical parameters.
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