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Abstract—The intelligibility of demodulated audio signals from
analog high frequency transmissions, e.g., using single-sideband
(SSB) modulation, can be severely degraded by channel distor-
tions and/or a mismatch between modulation and demodulation
carrier frequency. In this work a neural network (NN)-based
approach for carrier frequency offset (CFO) estimation from
demodulated SSB signals is proposed, whereby a task specific
architecture is presented. Additionally, a simulation framework
for SSB signals is introduced and utilized for training the NNs.
The CFO estimator is combined with a speech enhancement net-
work to investigate its influence on the enhancement performance.
The NN-based system is compared to a recently proposed pitch
tracking based approach on publicly available data from real
high frequency transmissions. Experiments show that the NN
exhibits good CFO estimation properties and results in significant
improvements in speech intelligibility, especially when combined
with a noise reduction network.

Index Terms—speech enhancement, carrier frequency offset
estimation, single-sideband transmissions

I. INTRODUCTION

With carrier frequency offset (CFO) we denote the frequency
difference between the modulation oscillator in the transmitter,
which mixes the baseband signal to the transmit carrier
frequency and the demodulation oscillator of the receiver
which mixes it back to baseband. A CFO causes a shift in
the frequency spectrum in the demodulated audio signal. This
shift significantly affects the speech quality [1] and leads to a
degraded listening experience. It has been termed “chipmunk-
like” speech [2] or “duck-speaking” [3] speech. Even small
CFOs of 5 Hz already result in a noticeable degradation [2]
and CFOs above 10 Hz lead to a reduced intelligibility [4].

The main cause of CFOs is an inaccurate knowledge of the
modulation frequency. But even with perfect knowledge of
the modulation frequency, a significant CFO can be caused
by the temperature sensitvitiy of the crystal oscillators of the
receiver due [5, p. 92], or by the Doppler shift due to a moving
receiver/transmitter [5, p. 91]. For example, a temperature-
induced inaccuracy of 25 ppm in the demodulation frequency
for a transmission a 7 MHz carrier frequency results in a CFO
of about 175 Hz!

For analog single-sideband (SSB) transmissions there exist
several approaches to estimate the CFO which exploit the
spectral properties of speech signals [2, 3, 6, 7]. Some systems
focus on the pitch and harmonics of the received speech signal

to derive the CFO [6, 7]. Others use the third-order harmonics
of the signal [2] or a combination of a rough preliminary
estimation with a subsequent neural network (NN)-based fine-
tuning step [3].

In this work a NN-based CFO estimator is presented. It
consists of two stages, a masking stage to extract areas in the
signal with high energy and a full-band classifier that retrieves
a final CFO estimate. Thereby, the mask is estimated from
the signal spectrum that is segmented along the time axis, and
the segments are independently processed by sub-band layers
(SBLs). Here, either a convolutional neural network (CNN) or
a recurrent neural network (RNN) architecture is employed.

Furthermore, a software framework is designed to simulate
SSB signals exhibiting different CFOs. It artificially adds
additive distortions to the signals that have been gathered from
real recordings of high frequency transmissions. As shown by
the experiments, these simulations are realistic enough that
a NN trained solely on simulated data achieves competitive
results on real recordings.

In our evaluation, the proposed network is compared to the
recently proposed “RAKE” estimator [7] for CFO estimation.
Both approaches operate on segments, for which a NN-based
speech activity detection (SAD) estimator has detected speech
activity [8]. Additionally, the influence of the CFO estimation
and correction on the performance of a downstream noise
reduction unit is examined. The noise reduction network is
based on the ConvNet architecture [9] and has shown strong
noise reduction performance on the CHiME-4 database [10].

The paper is structured as follows. In Section II the NN-
based CFO estimator is introduced. Afterwards, the simulation
framework is described in Section III. Section IV gives a short
introduction to the noise reduction network configuration and
training. The evaluation results are given in Section V and the
paper ends with a short conclusion in Section VI.

II. NN-BASED CFO ESTIMATION

A NN for CFO estimation should be robust against non-
stationary noise even at low signal to noise ratio (SNR). To
achieve that, the network is designed as a two-stage model
consisting of a masking and a classification layer. The first
stage calculates an attention mask that is multiplied with the
observed signal. Thereby, frequencies with activity in the input
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Fig. 1. Block diagram of the NN-based carrier frequency difference estimator.

vector are emphasized, such that the second stage can focus on
frequencies with high energy and is less affected by additive
noise.

The mask estimation is performed separately for each of NF̃

sub-band layers (SBLs) using a network with shared parameters.
Each layer processes a sub-band vector ỹ` ∈ RF̃ that is
extracted from the input vector y` ∈ RF with F denoting the
number of frequency bins, F̃ = bF/NF̃ c the sub-band size and
` the frame index. The sub-bands do not overlap, and possibly
remaining frequency bins [F̃ · NF̃ , . . . , F ] near the Nyquist
frequency are dropped. Estimating masks per sub-band allows
the SBLs to highlight speech and suppress noise regardless of
which sub-band contained the observed noise pattern during
training. Finally, the attention vector m`, which has the same
size as the input vector y`, is constructed from the sub-band
mask vectors m̃` estimated by the SBLs.

The vector m` is multiplied with the input vector resulting
in o` = m` ◦ y`, with ◦ denoting the Hadamard product. This
masked vector o` is further processed by the second stage
of the network (”full-band classification layer”). This layer
takes advantage of the full frequency range to predict the CFO.
The output vector q̂` has the size ∆f,max −∆f,min, where the
frequency bin indices ∆f,min and ∆f,max refer the lowest and
the highest considered CFO value.

Two possible architectures are compared for the SBLs, a
multi-layer RNN and a 1D-CNN block consisting of three
CNN layers each including a batch normalization [11]. Both
architectures use a Sigmoid output activation function that
limits the value range of the SBL output masks m̃` to [0, 1].

For the classification layer a 1D-CNN block with a subse-
quent feed forward (FF) block is chosen. The 1D-CNN block
consists of three CNN layers with batch normalization and
a rectified linear unit (ReLU) activation function. Each CNN
layer has a 1× 3 kernel and a decreasing number of channels.
For the FF block two linear layers are used with a ReLU and
a softmax activation function, respectively. A block diagram
of the described architecture is depicted in Figure 1.

Binary cross entropy (BCE) is chosen as the loss function
since the discrete number of possible CFOs states a typical
classification task. All NNs require adequate training data
for the task at hand. Therefore, the next section introduces a
framework to simulate SSB signals with a CFO.

III. CFO SIMULATION

Recording a database of real SSB transmissions with various
CFOs is expensive and time consuming. Therefore, we decided
to simulate the entire training data for the CFO estimation
network and use real recordings only for evaluation purposes.

The impact of a CFO on the demodulated signal is two-fold.
First, because of its spectral shift part of the speech spectrum is
suppressed by the filters applied to the signal during modulation
and demodulation. This leads to the fact that a part of the signal
is lost. Second, the remaining speech signal spectrum is shifted
on the frequency axis.

To simulate these effects, signals from the clean training set
of the LibriSpeech database [12] are utilized in a resampling
based procedure, which is computationally much more efficient
than simulating the whole modulation and demodulation
process.

According to the International Telecommunication Union
(ITU) regulations, the bandwidth of a SSB transmission is
limited to 2.7 kHz. Therefore, the clean signal is band-limited
with a low-pass filter and it is interpolated by a factor of four to
a higher sampling rate to obtain the required bandwidth for the
simulation of a shift along the frequency axis. Subsequently, the
interpolated signal is shifted to a simulated carrier frequency
via modulation and processed by a band-pass filter to remove
one of the side bands. Which to remove depends on whether
lower sideband (LSB) or upper sideband (USB) transmission is
simulated. The signal is then filtered with a band pass whose
center frequency is chosen depending on the CFO to simulate.
Afterwards, the signal is demodulated with a carrier frequency
including the CFO, low-pass filtered and decimated by a factor
of four. The resulting signal shows the CFO induced frequency
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Fig. 2. PESQ and STOI values for different CFOs.

shift and bandwidth loss. In a final step, real recordings of a
high frequency link without an active transmission are added to
the simulated signal with a random SNR to represent channel
noise.

A similar procedure is used to correct an estimated CFO. In
this case the CFO is considered and compensated during the
modulation of the signal to the simulated carrier frequency.

IV. NOISE REDUCTION NETWORK

The CFO estimation and correction is followed by a speech
enhancement system that aims at reducing the channel noise.
Here, the ConvNet [9] architecture that was proposed in [10]
is used. It is trained on the simulated SSB signals described in
the last section with a CFO of zero using the scale invariant
signal to distortion ratio (SI-SDR) [13] as the loss function.
As suggested in [10], the network is trained to estimate both
the clean, noisefree speech and the noise. Here, the target
speech signal is the LibriSpeech clean signal downsampled
to 8 kHz and band-limited to 2.7 kHz. The network’s encoder
and decoder use a large window size of 64 ms and a shift of
16 ms, as first experiments have shown that these parameters
leads to the best results on real SSB transmissions.

V. EVALUATION

The performance of the NN-based CFO estimator is eval-
uated against the cumulative distribution function (CDF)
of the CFO estimation errors. Its impact on the following
speech enhancement system is measured using the perceptual
evaluation of speech quality (PESQ) [14] and short-time
objective intelligibility (STOI) [15] metrics of the enhanced
signals. Since both metrics have been developed for signals
without a CFO, it needs to be checked if they allow a valid
evaluation for our scenario with CFO correction. To do so,
we calculated the average PESQ and STOI values on a set
of 5000 CFO distorted signals. All signals are simulated as
described in Section III with channel noise added with an SNR
uniformly drawn at random between 25 and 30 dB. From the
graphs in Figure 2 a clear correlation can be seen between the
CFO and the STOI value, if the CFO is above 10 Hz. For the
PESQ value a correlation with the CFO is visible if the CFO
is in the range between 10 Hz and 100 Hz.

A. Database

While training was carried out on simulated data as described,
the evaluation experiments are conducted on real SSB record-
ings, which are publicly available from [7]1. The evaluation data
consists of utterances from the LibriSpeech database [12] that
were transmitted using LSB modulation over high frequency
links at 7.06 MHz−7.063 MHz and 3.6 MHz−3.62 MHz and
recorded by Kiwi-software defined radio devices [16]. We
followed the steps described in [17] to create the database,
choosing modulation and demodulation frequencies appro-
priately for each transmission to generate CFOs from the
following set: [0 Hz, 100 Hz, 300 Hz, 500 Hz, 1000 Hz]. Here,
only positive CFOs are considered since negative shifts lead
to the loss of the pitch and its first harmonics, so that
the speech signal cannot be reconstructed easily. As the
database [7] had been recorded without human supervision,
about 1 % of the recordings include concurrent speakers at
neighboring frequencies. These recordings are not considered
in the following experiments in order to focus on the actual
task, but this somewhat limits the comparability with the error
rates reported in [7].

B. Baseline

The “RAKE” algorithm for CFO estimation presented in
[7] is used as a baseline system. It estimates the CFOs by
tracking the pitch and the harmonics in the speech signal.
Since the approach is limited to positive CFOs, only the range
∆f,min = 0 Hz to ∆f,max = 1500 Hz is considered.

C. NN parameters of the CFO estimator

All networks are trained on simulated signals as described
in Section III with a random SNR in the range from −5 dB
to 10 dB and a CFO between −100 Hz and 2000 Hz. The
short time Fourier transform (STFT) magnitudes of the input
signals are chosen as features with a window length of 32 ms,
an overlap of 22 ms and a size of 4096. Since the network
operates in the frequency domain, its estimation accuracy is
limited by the frequency resolution. For the given STFT size,
the network has an inherent limit to its estimation accuracy of
about 1.95 Hz.

The classifier consists of a 1D-CNN block, which includes
CNN layers with 128, 256 and 512 channels. For the FF block
512 and 2100 units are chosen.

Two SBL architectures are investigated, each employing
approximately 5 M parameters. The CNN consists of three
layers with 256, 256 and F̃ = 128 channels. For the RNN
three layers with 256, 256, 128 units are chosen. All networks
are trained for 100 k iterations with the ADAM optimizer [18]
and a learning rate of 0.001.

During evaluation the CFO estimate ∆̂f for an utterance is
calculated with

∆̂f = argmax
i

L∑
`=1

p̂`,i, (1)

1https://zenodo.org/record/4485559
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Fig. 3. CDF of the CFO estimation error for the NN-based systems compared
with the RAKE algorithm.

where p̂`,i is the i-th value of the NN output vector p̂`. The
sum over the time dimension reduces the influence of small
errors in the estimation, e.g., in case of short silence segments.

D. CFO Estimation

In the following experiments, the NN-based estimators are
compared to the RAKE algorithm. First, the SAD from [8] is
applied to the signal to identify segments with active speakers.
Then all active segments in a record are concatenated before
the CFO estimation is performed. Each recording includes at
least 10 s of activity. To handle signals including CFOs the
SAD had been retrained with appropriate data.

As displayed in Figure 3, the RNN-based estimator clearly
outperforms the RAKE algorithm, while the CNN is on par
with the RAKE algorithm. All approaches provide in 98 % of
the cases an error below 10 Hz, which is considered acceptable
because of the negligible intelligibility loss [4].

A detailed analysis showed that the errors above 10 Hz of
the RAKE algorithm are mostly originating from an interfering
narrow-band signal that is active on periodically repeating
frequencies, which is misinterpreted as speech harmonics (see
Figure 4). The NN-based systems are not distracted by these
interfering narrow-band signals since similar distortions are
seen during training.

In Figure 5 the estimation error is plotted for the five
possible CFOs in the evaluation set. For all three estimators,
an increasing CFO does not lead to a higher estimation error,
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Fig. 4. Excerpt of the spectrogram for a signal that led to an error in the
CFO estimation with the RAKE algorithm.
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Fig. 5. CFO estimation error for the five possible CFOs for the NN-based
systems compared with the RAKE algorithm.

which indicates an independence of the estimation error from
the true CFO value, assuming positive CFOs.

E. Speech enhancement

Although the NN-based CFO estimators outperform the
RAKE algorithm, it remains to be examined whether the differ-
ence in accuracy has a significant impact on the speech quality
after applying a denoising system to the CFO compensated
signal. Therefore, the noise reduction system described in
Section IV is applied to recordings with and without CFO
compensation and the corresponding results are given in Table I.

Both the NN-based estimators and the RAKE achieve
similar enhancement metrics as an oracle CFO compensation.
However, the NN-based estimators do not result in better
enhancement performance than the RAKE CFO estimator.
This can be explained by highly distorted signals, where the
noise reduction fails even with oracle CFO information. The
relatively small performance difference between the NN-based
and the RAKE CFO estimator is then insignificant. Note, that
all CFO estimation systems lead to a large improvement in
both enhancement metrics compared to the noise reduction
without a CFO compensation.

VI. CONCLUSIONS

In this paper we have presented a NN-based CFO estimator
and a simulation framework to generate artificial training data.
The network, solely trained on simulated signals, achieves a
CFO estimation accuracy with a remaining error of less than
10 Hz in about 99 % of the cases on real SSB recordings, and

TABLE I
SPEECH ENHANCEMENT RESULTS ON REAL HF RECORDINGS FOR CFO

CORRECTION AND DENOISING.

CFO Estimation Not Denoised Denoised
& Compensation PESQ STOI PESQ STOI

None 1.28 0.40 1.47 0.31

RAKE 1.69 0.60 2.31 0.75
CNN 1.67 0.60 2.29 0.75
RNN 1.69 0.60 2.33 0.75

Oracle 1.69 0.61 2.43 0.78
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is superior to a signal-characteristic-based method used for
comparison.

However, this improvement in CFO estimation is not trans-
formed into substantial gains in speech quality. All investigated
methods achieve comparable enhancement results in terms of
PESQ and STOI. Overall, the experiment with a subsequent
noise reduction system demonstrated the importance of CFO
correction to achieve good enhancement performance.
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