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Abstract—Anomalous sound detection systems must detect
unknown, atypical sounds using only normal audio data. Conven-
tional methods use the serial method, a combination of outlier
exposure (OE), which classifies normal and pseudo-anomalous
data and obtains embedding, and inlier modeling (IM), which
models the probability distribution of the embedding. Although
the serial method shows high performance due to the powerful
feature extraction of OE and the robustness of IM, OE still has
a problem that doesn’t work well when the normal and pseudo-
anomalous data are too similar or too different. To explicitly
distinguish these data, the proposed method uses multi-task
learning of two binary cross-entropies when training OE. The
first is a loss that classifies the sound of the target machine to
which product it is emitted from, which deals with the case where
the normal data and the pseudo-anomalous data are too similar.
The second is a loss that identifies whether the sound is emitted
from the target machine or not, which deals with the case where
the normal data and the pseudo-anomalous data are too different.
We perform our experiments with DCASE 2021 Task 2 dataset.
Our proposed single-model method outperforms the top-ranked
method, which combines multiple models, by 2.1 % in AUC.

Index Terms—anomalous sound detection, outlier exposure,
inlier modeling, hypersphere, multi-task learning

I. INTRODUCTION

All machines in factories, plants, office buildings, etc.,
require regular maintenance to keep them functioning properly,
and they can also break down or malfunction. It is impor-
tant to quickly address such equipment problems to prevent
damage to the machine, or serious accidents. In the past,
skilled maintenance technicians would monitor the operation
of machines and diagnose their condition by listening to them.
However, with the decrease in the rapidly aging working
population, providing quality maintenance services with fewer
skilled workers is becoming more challenging. Furthermore,
automated factories and plants are also becoming more com-
mon [1]. In response to these trends, methods for automatically
detecting anomalous sounds have been developed [2], [3].

Anomalous sound detection (ASD) is the task of identifying
whether the sound emitted by a target machine is normal
or anomalous. However, ASD is very different from simple,
binary classification problems [4] because it is difficult to
collect data on every possible anomalous sound. These sounds

rarely occur during the normal operation, and the possible
types of anomalous sounds are very diverse. Therefore, it is
more practical to detect unknown, anomalous sounds using
only normal sounds [5].

Currently, two types of ASD approaches are mainly used:
inlier modeling (IM) and outlier exposure (OE). IM is a
method that models the probability distribution of normal
data and detects data that does not correspond to the model
as anomalous data. IM methods such as autoencoders [6]–
[8], local outlier factor (LOF) [9], gaussian mixture models
(GMM) [10], [11], normalizing flows [12], [13] have been
used. IM is robust, but it is difficult to extract effective
features. In contrast, OE is a method for learning the decision
boundaries of normal data by classifying normal and pseudo-
anomalous data [14], [15]. OE methods such as deep semi-
supervised anomaly detection [16], [17], and deep double
centroids semi-supervised anomaly detection (DDCSAD) [18]
have been used. OE is easy to extract effective features, but
it is not robust. It also does not work well when normal and
pseudo-anomalous data are too similar or too different [19].

Recent studies have proposed methods that use a combi-
nation of IM and OE methods, and these approaches have
achieved high ASD performance [19]. One such approach,
called the parallel method, ensembles anomaly scores for both
IM and OE to compensate each other for the weakness of
IM and OE [12], [20]. However, the parallel method requires
multiple models, which use different training processes, to be
created to obtain combined anomaly scores, increasing the cost
of system development and maintenance. Another combination
approach, called the serial method, uses OE- and IM-based
methods in series. The serial method consists of the following
three steps: First, we train the embedding with an OE method
classification task using normal and pseudo-anomalous data.
Next, using the embedding extracted by the OE method in
Step 1, an IM method trains a normal data distribution. Finally,
data that differs from the distribution constructed in Step 2 is
detected as anomalous. The Serial method solves the difficulty
of IM feature extraction and the robustness of OE [21]–[23].
Still, it leaves the problem of when the normal and pseudo-
anomalous data of OE are too similar or too different.
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To explicitly distinguish between normal and pseudo-
anomalous data that are too similar or too different, the
proposed method uses multi-task learning of two binary cross-
entropies when training OE in the serial method. Here, the
datasets [24], [25] contain several machine types such as fan,
pump, valve, etc. Each machine type has K product IDs
such as ID 0, 1, 2, etc. The first is a loss that classifies the
sound of the target machine type to which product ID it is
emitted from, which deals with the case where the normal data
and the pseudo-anomalous data are too similar. The second
is a loss that identifies whether the sound is emitted from
the target machine type or not, which deals with the case
where the normal data and the pseudo-anomalous data are
too different. The proposed method overcomes the weaknesses
of OE. Furthermore, the proposed method of OE is easy to
develop and manage since one model corresponds to one
machine type, and there is no need to create a model for
each product ID [26]. We evaluate the performance of the
proposed method by conducting experiments and showing its
effectiveness. Also, we visualize the embedding by t-SNE [27]
and qualitatively discuss the effect of using the serial method
and the change of embedding by the proposed method.

(a) DDCSAD (b) Proposed method

Fig. 1: Images of embeddings which obtained by each method.

II. OE-BASED METHOD

To improve the OE component of our serial method, we
focus on DDCSAD [18], which has demonstrated high ASD
performance. DDCSAD is trained using multi-task binary clas-
sification and metric learning. A binary classification model is
trained using the target product ID of the target machine type
as positive samples, and the other product IDs and the other
machine types as negative samples. In addition, we define the
centroid for positive and negative samples and perform metric
learning to minimize within-class variance and maximize
between-class variance for each class. During inference, we
use the probability calculated using binary classification and
the weighted average of the distance between the centroid of
the positive samples and the embedding as the anomaly score.

Fig. 1a shows an image of an embedding obtained using
DDCSAD. In this method, the pseudo-anomalous data move
away from the centroid of the positive sample and move
closer to the negative sample, which is considered robust
when the distributions of normal and anomalous data are
very different. However, there are several problems with this

method. First, when the distributions of normal and pseudo-
anomalous data are similar, the performance of this method
is degraded because the decision boundaries of normal and
pseudo-anomalous data are different from those of normal
and anomalous data. Second, when using Euclidean distance,
the embedding of normal data is assumed to follow a normal
distribution. However, if the model is not expressive enough,
the above assumption cannot be satisfied, and performance
is degraded. Furthermore, since a model is created for each
product ID, the performance variation of the model becomes
large. In addition, the development and maintenance of the
model become complicated.

III. PROPOSED METHOD

Fig. 1b shows an image of an embedding obtained by
our proposed method. Fig. 2 shows an overview of the pro-
posed method. To explicitly distinguish between normal and
pseudo-anomalous data that are too similar or too different,
the proposed method uses multi-task learning of two binary
cross-entropies when training OE. The first is a product ID
classification loss, which deals with cases where the normal
and pseudo-anomalous data are too similar. The second is a
machine type classification loss, which deals with cases where
the normal and pseudo-anomalous data are too different.

If the audio input is represented as xi (i = 1, 2, ..., N), the
machine type is represented as ti (i = 1, 2, ..., N), where ti is
1 for the target machine type and 0 for the other machine types.
Each machine type has K product IDs, and xi belongs to one
of them. The one-hot vector for the product ID is represented
as y{i,k} (i = 1, 2, ..., N, k = 1, 2, ...,K), where y{i,k} is 1 for
the k th element and 0 for the other elements when the product
ID is k. Product IDs classification loss can be represented as:

Lproduct = − 1

K
∑N

i=1 ti

N∑
i=1

K∑
k=1

ti
{
y{i,k}log (gproduct (f(xi)))

+(1− y{i,k})log (1− gproduct (f(xi)))
}
,

(1)
where f is an encoder, and gproduct is a linear transformation.
Machine type classification loss can be represented as:

Lmachine = − 1

N

N∑
i=1

{
tilog

(
gaffine

(
||f (xi) ||2

))
+(1− ti)log

(
1− gaffine

(
||f (xi) ||2

))}
,

(2)

where gaffine is an affine transformation. When creating mini-
batches, we use a batch sampler so that the value of t is 1:1.
The final combined loss function is:

L = Lmachine + λLproduct, (3)

where λ is a hyperparameter. Mixup [28] is applied in mini-
batches to obtain intermediate features between normal and
pseudo-anomalous data, and each sample applies Eq. 1 if the
target machine type is included. In other words, we identify
the product IDs of the target machine type but not the product
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IDs of the other machine types. The method for calculating
the anomaly score ai (i = 1, 2, ..., N) is:

ai = A (h (f (Xi))) , (4)

where Xi is a set of S segments that divide xi into T seconds,
allowing for overlap, h is a post-processing function for IM
such as GMM or LOF, and A is the aggregator of the anomaly
scores such as max / average pooling.

By using the product IDs classification, anomalous sounds
that are similar to normal sounds are distributed around
each product ID. By using the machine type classification
by the norm of embedding, anomalous sounds that differ
significantly from normal sounds are collected near the center
of the hypersphere. This approach is inspired by DDCSAD’s
training method, which involves collecting pseudo-anomalous
data into a single point. Since the proposed method explicitly
distinguishes between normal and pseudo-anomalous data that
are too similar or too different, it avoids the insufficient
expressiveness of the OE embedding. In other words, the
proposed method obtains an embedding suitable for detecting
normal or similar sounds. In addition, it is easy to develop
and maintain the system because the model is created for each
machine type, not for each product ID in each machine type.

Fig. 2: Overview of our proposed method.

TABLE I: Hyperparameters for each machine type.
LR=learning rate, BS=batch size

fan gearbox pump valve slider ToyCar ToyTrain
LR 0.001 0.001 0.001 0.0005 0.001 0.001 0.0005
BS 32 128 128 128 128 128 32
λ 0.1 10.0 10.0 10.0 10.0 10.0 0.1
h GMM GMM GMM GMM GMM LOF LOF
p 16 64 2 32 2 16 8

IV. EXPERIMENTAL EVALUATION

A. Experimental conditions
To evaluate the performance of the proposed method, we

conducted experiments using the data from the DCASE 2021

(a) DDCSAD pump ID 03 (b) DDCSAD slider ID 03

(c) Proposed method
pump ID 03

(d) Proposed method
slider ID 03

(e) Only product IDs
classification pump ID 03

(f) Only product IDs
classification slider ID 03

Fig. 3: Visualizations of various embeddings

Task 2 Challenge (MIMII Due [24], ToyADMOS2 [25]). The
training and evaluation data in the same domain were used. We
used sound from seven machine types: fan, gearbox, pump,
valve, slider, ToyCar, and ToyTrain. Each machine type has
6 product IDs. For each product ID, 1,000 normal sound
samples were used as training data, while 100 normal and
100 anomalous sound samples were used for evaluation data.
ID 0, 1, and 2 of the evaluation data were used as validation
data to determine the hyperparameters p of IM and λ, and ID
3, 4, and 5 were used as test data. When training Encoder
f , 90 % of the training data was randomly selected, and the
remaining 10 % was used for validation. Each recording is a
single-channel, 10 sec. segment of audio sampled at 16 kHz.

Each machine’s amplitude was calculated and normalized
during preprocessing to have a mean of 0 and a variance of 1.
For each audio input sequence, we extracted a log-compressed
Mel-spectrogram with a window size of 128 ms, a hop size of
16 ms, and 224 Mel-spaced frequency bins in the range of 50–
7800 Hz, in 2.0 sec. These features were passed to encoder f
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TABLE II: Performance evaluation results. Values represent the harmonic mean of AUC [%] and pAUC (p = 0.1) [%] for each product ID.
“All / Har-mean” column values represent the harmonic mean of AUC and pAUC over all machines and product IDs.
#models column values represent the number of required models for one machine type.

Method fan gearbox pump valve slider ToyCar ToyTrain All / Har-mean #models
Parallel method [12] 56.11 62.43 85.33 66.68 74.58 68.46 69.04 67.93 5
Serial method [22] 82.37 66.22 77.21 72.06 78.02 54.72 50.88 66.78 1

DDCSAD [18] 69.21 58.13 68.55 75.66 59.56 57.71 57.71 63.12 3
Proposed method 84.35 68.42 71.60 65.03 83.97 62.08 58.83 69.42 1

TABLE III: Ablation study results. Values represent the harmonic mean of AUC [%] and pAUC (p = 0.1) [%] for each product ID.
“All / Har-mean” column values represent the harmonic mean of AUC and pAUC over all machines and product IDs.

Method fan gearbox pump valve slider ToyCar ToyTrain All / Har-mean
Proposed method 84.35 68.42 71.60 65.03 83.97 62.08 58.83 69.42

w/o Mixup 86.35 71.54 66.52 67.66 81.88 52.51 59.90 67.75
w/o h(·) 64.34 49.80 66.25 57.19 61.69 50.51 53.35 56.93

Only product IDs classification 85.39 66.07 66.88 58.16 70.50 51.68 52.78 62.79

using EfficientNet-B0 [29]. Encoder f applied global average
pooling to the last convolutional layer and performs two non-
linear transformations to obtain a 128-dimensional embedding.
Weights of gproduct and gaffine were handled as trainable
parameters. We used AdamW [30], OneCycleLR [31], and
Mixup (α = 0.2) for training. Learning rate, batch size, λ,
inlier model h, and the inlier model’s hyperparameters p,
which the number of components for GMM and the number
of neighbors for LOF are shown in Table I. We used the model
with the smallest loss of validation data of the training data
after 300 epochs. We trained the inlier model h using the
validation data of the training data for each product ID. We
determined the hyperparameters of the inlier model h using
the validation data of the evaluation data. During inference,
we divided 10.0 sec. clips into S = 10 segments, with overlap
allowed so that each segment was T = 2.0 sec. The GMM
used the negative log-likelihood as the anomaly score, while
the LOF used the outlier score. The aggregator A was the
mean of the anomaly scores above the median for the GMM
and the mean of the entire anomaly scores for the LOF.

B. Results

The parallel [12] and serial [22] methods shown in Table II
are the first and second ranked methods in the DCASE 2021
Task 2 Challenge, respectively, while DDCSAD [18] is a
conventional method. Table II shows that for All / Har-mean,
the proposed method outperformed all of the other methods.
As shown in the #models in Table II, the proposed method
using a single model outperformed the parallel method ensem-
bled different five models. The proposed method improved the
performance of ToyCar and ToyTrain by more than 7 % over
the serial method, and we believed that the proposed method
obtained more suitable embedding for ASD. We believe that
the reason for the performance improvement of the proposed
method compared to DDCSAD is that it is more flexible and
effective in modeling the normal data by IM without assuming
a normal distribution for the normal data. Focusing on h, we
achieved the best performance when using a GMM with the
machine types in MIMII Due dataset and a LOF with the
machine types in ToyADMOS2 dataset, suggesting that it was
important to use a suitable function h for the dataset.

Our ablation study results are shown in Table III. Fig. 3
shows the results when the embedding of each method is visu-
alized using t-SNE [27]. Table III shows that using Mixup im-
proved the pump, slider, and ToyCar. We believed that Mixup
effectively trained data with a high similarity between product
IDs. However, Mixup did not improve ASD performance for
the other machine types. Based on these, we considered Mixup
to be one of the most important hyperparameters.

We then examined the difference in performance with and
without h, the IM component of our proposed method. When
we did not use h, we used the average of the output proba-
bilities of the product IDs as the anomaly score instead [19].
The experiment shows that IM was effective for ASD. We
believe that even though some parts of the data distribution
are less informative for the product ID classification and tend
to be ignored in calculating the output probabilities of the
product IDs, they are still helpful in detecting differences in
the data distribution between normal and anomalous data. IM
can detect such differences in distribution by GMM or LOF.

We then considered the effect of Eq. 2, which calculates the
machine type classification loss. The only product IDs classifi-
cation in Table III is almost the same as the serial method [22].
The performance of the proposed method outperformed that
of the only product IDs classification, since Eq. 2 collected
anomalous data that differed significantly from normal data
near the center of the hypersphere. More anomalous data
was distributed near the other machine types when using the
proposed method, as shown in Fig. 3c and Fig. 3d, than when
the only product IDs classification was used, as shown in
Fig. 3e and Fig. 3f.

V. CONCLUSION

In this paper, we proposed using multi-task learning of
two binary cross-entropies: the product ID classification loss
and the machine type classification loss when training OE
in the serial method. The product ID classification loss and
the machine type classification loss correspond when normal
and pseudo-anomalous data are too similar or too different,
respectively. Even though the proposed method used a single
model, it outperformed conventional ensembled methods. Our
ablation study and visualization of embeddings confirmed the
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effectiveness of using post-processing and the effectiveness
of the proposed method when detecting anomalous data that
is too different from normal data. In future work, we will
investigate the impact of training data on ASD performance
and the use of data with different domains.
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