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Abstract—The acquisition of head-related impulse responses
(HRIRs) has traditionally been a time-consuming acoustic mea-
surement process. Novel continuous-azimuth recording tech-
niques have dramatically accelerated the acquisition, but con-
version into continuous Spatial-Fourier representations (SpaFoR)
of HRIRs provides a host of cumbersome implementation chal-
lenges. The direct closed-form least-squares approach is unfortu-
nately not practical and we will therefore explore the retrieval of
SpaFoR model parameters of HRIR by contemporary machine-
learning tools. Specifically, we employ the standard stochastic-
gradient learning with Tensorflow on a graphics processing unit
(GPU) and compare its performance with previous covariance-
based least-squares on the general purpose processor. Apart from
the sought simplification and acceleration, our paper is dedicated
to hyperparameter optimization in order to make sure the final
state of the machine learning approach still attains the accuracy
of the optimal least-squares solution. The paper finally applies the
proposed method to a real acoustic HRIR recording to illustrate
the validity of the system identification obtained by learning.

Index Terms—HRTF acquisition, machine learning

I. INTRODUCTION

The head-related transfer function (HRTF) or its time-

domain representation, the HRIR, is an essential component of

binaural sound rendering with headphones. While a number of

generic (non-individual) HRIR sets are easily available, it was

demonstrated that individual HRIRs would contribute to fully

immersive virtual reality [1]–[3]. Many routes to individual

HRTFs thus have been reported based on acoustic measure-

ments [4]–[6], geometric modeling and numerical computation

[7], [8], or the personalization of available HRIR catalogues

by perceptual [9], morphological [10], or anthropometrical

matching with deep learning tools [11]–[13].

A recent HRIR trend was dedicated to the very fast acoustic

measurement per individual using the constrained [14]–[18]

or unconstrained [19]–[21] continuous head movement of the

subject of interest. The challenge here consists in the retrieval

of HRIR from very little data and dynamic measurements.

Another important research trend for HRIR has been dedicated

to its continuous spatial interpolation with the spatial-Fourier

representation [22], [23] in order to support seamless binaural

rendering of dynamic acoustic scences. Both trends then have

also been united in terms of the spatial-Fourier regression

to fast continuous HRIR recordings [24], [25] with yet in-

creased challenges related to the optimal retrieval of SpaFoR

parameters in an end-to-end fashion from the limited data

set. Specifically, it requires huge computational and memory

resources or, conversely, very careful attention to the detailed

structure of the data covariance matrix to accomplish the

closed-form least-squares (LS) regression.

In this paper we therefore pursue an alternative route to

SpaFoR regression using a contemporary machine-learning

(ML) toolchain for data-driven optimization. This requires a

reformulation of the LS problem such that it can be efficiently

solved with parallel hardware. We thus aim to harness the

computational benefits of the ML-framework on GPU. The

paper specifically derives a convolutional SpaFoR architecture

with manageable memory requirements and implements it with

Keras in Tensorflow. The GPU then invokes several epochs of

simple stochastic gradient descent (SGD) to fit the model to

the acoustic recording. While the reformulation significantly

simplifies the computational model on theoretical grounds, fur-

ther quantitative analysis and optimization of hyperparameters

is conducted in this paper in order to attain the LS baseline

with rapid convergence and desired final accuracy.

The remainder of this paper is organized as follows. Sec-

tion II describes the continuous measurement setup and the

computational demands of the SpaFoR model for HRIR re-

trieval. Section III then presents the proposed ML approach

for SpaFoR computation, followed by a systematic investiga-

tion of optimal hyperparameters for training in Section IV.

Section V finally reports a comparison of utility with the

baseline covariance-based least-squares regression on a real

HRIR recording. Section VI draws our conclusions.

II. MEASUREMENT SETUP AND SPAFOR MODEL

We rely on the continuous HRTF measurement setup with

head revolution time T360 as described in [16] and shown

x(k)

φk

y(k)

n(k)

Fig. 1. Continuous measurement of an HRIR with rotating head.
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in Fig. 1 for convenience. A white-noise probe signal x(k)
is applied and the received signal y(k) is described by the

“rotating-head” convolutive model [26]

y(k) =

N−1∑

l=0

h(l, φk)x(k − l) + n(k) , (1)

where h(l, φk) is the HRIR at impulse response index l and

relative azimuth φk between head and source at discrete time

k. Reliant on constant angular velocity ω=2π/T360, we easily

have φk = ωkTs with Ts = 1/fs the sampling time interval.

The signal n(k) represents independent measurement noise.

A spatial-Fourier model of the HRIR refers to a linear

expansion

h(l, φ) =

Q∑

q=−Q

a∗q,l cq(φ) (2)

of the entire angular trajectory of each HRIR coefficient in

terms of the continuous Fourier basis cq(φ)= exp(jqφ). The

spatial Fourier coefficients aq,l are independent of the azimuth

φ. The model is nicely compact in that the necessary range of

spatial frequencies (i.e., model order Q) is well bandlimited

to, e.g., Q=39 at fs=48 kHz sampling [4], [22].

Using (2), an expansion model of the received signal in (1)

at the left or right ear is then given by

ŷ(k) =
N−1∑

l=0

Q∑

q=−Q

a∗q,l cq(φk)x(k − l) (3)

=

Q∑

q=−Q

a
H
q x(k) cq(φk) , (4)

where in the second step the convolution is expressed as an

inner product of coefficients aq = (aq,0, . . . , aq,N−1)
T and

signal vectors x(k) = (x(k), x(k − 1), . . . x(k − N + 1))T .

Note that the expansion models in (2) and (4) each comprise

overall U=N(2Q+ 1) unknown parameters aq,l.
These HRIR model parameters can now be determined by

fitting the model output ŷ(k) to a real measurement y(k) of L
samples. In [24], [25] this has been achieved by minimizing

the least-squares (LS) error

J(a) =

L−1∑

k=0

|y(k)− ŷ(k)|
2
=

L−1∑

k=0

∣∣y(k)− a
H
z(k)

∣∣2 (5)

with respect to a stacked coefficient vector a across all L
measurement samples, where z(k) comprehensively combines

input signal x(k) with basis functions cq(φk), i.e.,

a =




a−Q

a−Q+1
...

aQ


 and z(k) =




c−Q(φk)x(k)
c−Q+1(φk)x(k)

...

cQ(φk)x(k)


 . (6)

In this form of the problem statement, its theoretical solution

is easily found in closed form as [27], [28]

â = R
−1
zz ryz , (7)

U
=

N
(2

Q
+
1
)

Fig. 2. Block-Toeplitz shape of the
data covariance matrix Rzz of the
closed-form least-squares approach
with model order Q=1.

with complex sample correlation ryz =
∑L−1

k=0 y(k) z(k) and

sample covariance Rzz =
∑L−1

k=0 z(k) zH(k) of size U×U .

The latter exhibits block-Toeplitz structure, as shown in Fig. 2,

due to the stacked definition of the regressor z(k). Considering

realistic HRIR model dimensions of N = 128, Q = 39 and

a recording duration of T360 = 60 s at fs = 48 kHz, the

computation time for covariance accumulation in the order of

O(N2Q2fs T360) turns out to be prohibitive. In order to still

accomplish the LS solution, a sophisticated approach including

the following procedures has been developed [24], [25]:

• acquisition of the first block row of Rzz ,

• submatrix approximation in Toeplitz shape,

• steepest descent iteration on Rzz submatrices.

While this solution of (7) requires 7 min on a Desktop-Matlab

Core-i7 system, it is inconvenient for further generalization.

III. MODEL IDENTIFICATION BY MACHINE LEARNING

The motivation for the ML approach to be pursued here

therefore consists in a data-driven minimization of the cost

function in (5) while circumventing costly covariance matrix

accumulation and necessary attention to its detail. To this end,

we may just hold the sought coefficients aq,l in a linear feed-

forward neural-network layer and feed cq(φk)x(k−l) products

according to (3) as the respective input data. Specifically, this

size U data cq(φk)x(k − l) at each time instant k could be

arranged line-by-line as training samples in a matrix of size

U×L and fitted to each sample of a recording y(k) as shown

in Fig. 3. With typical numbers of the previous section and

using float32, this amounts to a 240 GB complex-valued

representation of the data – way too much for concurrent desk-

top computer RAM and entirely unbalanced with a 60 s HRIR

sound recording (even if “data store” concepts on the harddrive

were considered). However, the predictors cq(φk)x(k − l) do

exhibit a subtle structure that is to be described and epxloited

in the sequel to save memory resources.

A. Convolutional Representation

We may rewrite the spatial-Fourier basis functions in (3) as

cq(φk) = cq(φk−l) exp(jqφ∆l), where φ∆l=φk−φk−l is the

head movement during time lTs. Moreover, it turns out that

φ∆l=2π l Ts/ T360 is independent of time k for the assumed

constant speed of rotation. The signal model from (3) is then

restated with equality as

ŷ(k) =

N−1∑

l=0

Q∑

q=−Q

ã∗q,l cq(φk−l)x(k − l) (8)

using modulated SpaFoR coefficients ã∗q,l = a∗q,l exp(jqφ∆l).
The time indices of angle φ and waveform x are now both
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L

x(k − l) cq(φk) y(k)

L

N(2Q + 1)

Fig. 3. Illustration of data/network configuration according to Eq. (3).

Conv2d

L

x(k − l) cq(φk−l) y(k)

L
+

N
−

1

N

(2Q + 1)

Fig. 4. Illustration of data/network configuration according to Eq. (8).

aligned to k−l and the entire model in (8) therefore appears

as a convolution along time k, where l is the convolution index

and cq(φk−l)x(k − l) are modified predictors.

As a major consequence, we can feed the modified pre-

dictors to a convolutional neural-network layer as shown in

Fig. 4. The convolutional layer in this case holds the same

number U of modulated coefficients ã∗q,l as before, however,

the computational mapping operates with a sliding window

of size N×(2Q + 1) with stride 1 to fit the y(k) sequence.

The exorbitant size of the input matrix mentioned before is

thus reduced to 2Q×(L+N) elements, which amounts to a

manageable 2 GB with former dimensions of the HRIR model.

After model fitting, a simple fixed matrix operation delivers

the desired weights aq,l from the modulated weights ã∗q,l.

Merely for curiosity, note that (8) refers to a “rotating

loudspeaker” convolutive signal model (instead of a rotating

head) according to physical considerations in [26]. We would

in the actual case of a rotating loudspeaker as well use the

modified predictors and directly obtain sought coefficients aq,l
and even save the fixed-matrix conversion. A measurement

apparatus with a loudspeaker rotating silently around the

listener, however, would be difficult to set up.

B. Real-Valued Implementation

For actual model fitting we rely on Tensorflow/Keras 2.3.0

on a Core-i7 Ubuntu Desktop PC with NVidia RTX 2070

Super GPU. In order to interface with its real-valued com-

putations, the convolutional model (8) can be rewritten by

Euler’s equation cq(φ)=cos(qφ)+j sin(qφ) in terms of real-

valued functions. Considering the real-valued nature of the

HRIR system in (1), we can further make use of the conjugate

symmetry ã∗q,l = ã−q,l = Re(ãq,l)+j Im(ãq,l) to express

ŷ(k) =
N−1∑

l=0

Q∑

q=−Q

wq,l rq(φk−l)x(k − l) (9)

with all real-valued basis functions and weights,

rq(φ) =





cos(qφ) for q > 0

1 for q = 0

sin(qφ) for q < 0 ,

wq,l =





2Re(ãq,l) for q > 0

ãq,l for q = 0

2 Im(ãq,l) for q < 0 ,

and weights ãq,l are retrieved easily from wq,l after fitting.

IV. HYPERPARAMETER OPTIMIZATION

We now optimize the configuration of the ML toolchain in

order to guide its rapid and stable convergence towards the

optimal LS solution. The analysis makes use of a Gaussian

simulation with unit-variance x(k) and HRIR model dimen-

sions as described before the end of Sec. II at SNR=30 dB

(if not indicated otherwise) to resemble a typical acoustic

recording setup. The network training uses stochastic gradi-

ent (SGD) optimization to minimize the mean-squared error

(MSE) loss in order to support the optimal LS solution and

a related minimum system distance SD = ||â − a||2/||a||2

of estimated SpaFoR parameters â at convergence. Other

relevant optimization criteria are the maximum learning rate

µ, the minimum data-to-parameter ratio DPR=L/U , and the

robustness to potential SNR variations.

A. Speed of Convergence

With an increasing number of training epochs, the system

distance SD between true and estimated HRIR coefficients

ideally decays from a starting point in the order of 0 dB to

the low negative dB range of the optimal LS solution where

it then saturates. We can thus define the speed of convergence

as the slope of the system distance SD [dB] in the first epochs

of the training process. Fig. 5 depicts the resulting speed of

convergence as a function of DPR and learning rate µ for the

proposed convolutional system. Except for small DPR, it can

be seen that DPR hardly affects the speed of convergence. The

clear trend of SD improvement per epoch [dB] seen with the

learning rate µ approximately follows a 10 log10(1−µ(2−µ))
law. This quantification is here inspired by similar results

in stochastic gradient theory for sample-wise online system

identification in the large SNR regime [29, Section 13.5].

However, we still have to determine how much the learning

rate 0 <µ< 1 can be exploited for stable convergence.
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Fig. 5. Convergence speed for various learning rates over DPR.
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Fig. 6. Maximum stable learning rate vs. data-to-parameter ratio.

B. Maximum Stable Learning Rate

We may therefore define the maximum stable learning

rate in an experimental sense as the value of parameter µ
that guarantees five consecutive and successful training runs

to convergence. Owing to different random initializations of

each training, this procedure avoid rash generalization of

training singularities. The result of the optimization in Fig. 6

is once more depicted as a function of DPR. Here we find

a strong dependence of the maximum stable learning rate,

which, according to the diagram, is well described by a simple

µmax =DPR/(DPR+3) empirical law. This dependence will

guide our choice of µ for optimally fast convergence to the

LS solution when HRIR data and its DPR are given.

C. Final System Distance

For the prediction of the expected minimum SD [dB] at

convergence, we resort to LS theory, e.g., [27, Eq. (8.57)].

The estimation error covariance of weights a subject to the

general cost function (5) is there exposed as

cov(â) = E{(â− a)(â− a)H} = σ2
nR

−1
zz (10)

with σ2
n the noise power. The next goal is to express this gen-

eral statement of estimation error covariance and the related

final SD with parameters of the HRIR problem at hand.
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Fig. 7. Final convergence for various configurations. Blue: SNR = 30 dB,
Red: SNR = 45 dB. Varied L, N or Q yields the respective DPR.

Having white noise x(k) and orthogonal functions cq(φk),
we may approximate a scaled identity Rzz≈σ2

z L IU×U and

cov(â) =
σ2
n

σ2
z L

IU×U =
σ2
n Ea

σ2
ŷ
L

IU×U , (11)

where in the last step we used the relationship σ2
ŷ=Ea σ

2
z of

the input-related variance σ2
z , the system energy Ea = ||a||2

of the model coefficients, and the resulting variance σ2
ŷ of our

noise-free signal model (3). The SD is then predicted as

SD =
Tr(cov(â))

Ea

=
U

L
SNR−1 =

1

DPR · SNR
, (12)

where SNR=σ2
ŷ/σ

2
n essentially refers to the microphone SNR

of the measurement setup. Thus, higher SNR and DPR both

can effectively bring down the minimum system distance.

Fig. 7 depicts our theoretical prediction (12) of LS perfor-

mance along with markers of corresponding network perfor-

mance in terms of SD for various model dimensions and data

sizes. Here, the expected final SD and the maximum stable

learning rate for a given DPR, in conjunction with the related

speed of convergence, have guided the number of training

epochs required for reaching the LS performance.

V. FURTHER COMPARISON WITH DIRECT LEAST-SQUARES

Besides the increased practicality of the ML implementation

over the direct LS approach, and otherwise equivalent final SD,

we briefly discuss two further aspects.

A. Computation Time

As a baseline, we refer to the 7 min computation time

of the aforementioned LS implementation with sophisticated

block-Toeplitz and sub-Toeplitz architecture [24], [25], model

dimensions Q=39, N =128, and recording time T360=60 s
at fs = 48 kHz. The related data-to-parameter ratio in this

case is DPR = 280. In contrast, the proposed ML approach

then uses 39 s to prepare the training tensors in a single-

threaded Python environment and another 15 s for 10 training

epochs for reliable convergence with a learning rate of µ=0.9.

This amounts to a total of only 54 s compared to about 7 min

with the baseline on the same computer system. Also, the SD

performance is equal to about -55 dB for both methods.
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B. Illustration on Real HRIR Measurement

For brief illustration and plausibility of the HRIR system

identification of this paper, a real continuous HRIR recording

is acquired with a dummy head according to Fig. 1 and pro-

cessed. During training of the SpaFoR coefficients, a selected

HRIR at angle φ=105◦ is reconstructed after 5, 10, and 100

epochs learning and benchmarked in the frequency domain in

Fig. 8 against the direct LS regression and a static reference

measurement at the same angle. With an insufficient number

of 5 training epochs, the result obviously deviates from the

reference and from LS. Otherwise, it is indistinguishable.

VI. CONCLUSION

The spatial-Fourier retrieval of HRIRs from fast continuous

measurements has been converted from the former covariance-

based closed-form LS regression to an ML framework. The

proposed method has been optimized to approach the optimal

LS solution fast and reliably. Apart from identical system

identification performance, two simultaneous advantages of

the ML toolchain then stand out: increased convenience of

the data-driven ML implementation and considerably reduced

computation time, hence, improving the overall utility of the

HRIR acquisition and SpaFoR computation system.
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