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Abstract—An efficient method of coding multichannel signals
from a microphone array is presented. This is advantageous for
cloud-based audio processing, such as Direction-of-Arrival (DOA)
and Automatic Speech Recognition (ASR). The method operates
by encoding separately the signal information - using a reference
signal - and the spatial information - using Relative Transfer
Functions (RTFs). Results for ASR and DOA performance are
presented for the proposed codec in comparison to a baseline
multichannel implementation of the Opus codec. Both stationary
and time-varying acoustic scenarios have been included in the
tests. The proposed RTF-based codec is shown in our experiments
to preserve spatial information in the array signals whereas the
baseline codec does not. The proposed codec is also shown to
outperform the baseline on the ASR task at low bit rates in the
region of 6 kbits per second per channel.

Index Terms—Audio encoding, relative transfer functions,
multichannel audio, microphone arrays, adaptive filters.

I. INTRODUCTION

Microphone arrays combined with suitable processing al-
gorithms are highly effective at noise reduction and dere-
verberation. Because of this they are a crucial component
within the front-end of multichannel ASR systems, which are
often sensitive to the high variability which can be found in
noise sources and reverberation. A commonly used technique
for noise reduction that is paired with microphone arrays is
acoustic beamforming [1], where the channels of a multichan-
nel signal are combined with a filter-and-weighted sum to
give an enhanced single channel signal. In real-world high
performance ASR systems and services, it is often the case
that the ASR is performed in the cloud rather than on the
device, requiring the transmission of the speech signals. One
option is that beamforming is applied on the array before
the enhanced single channel signal is transmitted to a cloud-
based ASR. This is effective and has the advantage that only
a single channel of audio needs to be transmitted, however,
it is restrictive as it removes spatial information which can
be used for further processing tasks such as DOA estimation
[2] and diarization [3], [4]. The option furthermore makes it
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impossible to apply the latest multichannel end-to-end ASR
paradigms in the cloud, since only the (albeit enhanced) signal
information is transmitted whereas the spatial information
embodied in the multichannel signals never reaches the cloud-
based processing.

Conventional audio codecs such as Opus [5], [6] have been
shown to be effective for use with ASR systems [7]. However,
such codecs have not so far been designed to fully leverage
the high correlations found in microphone array signals, ei-
ther failing to use them at all or destructively encoding the
phase/spatial information in an unrecoverable way. Opus is
a hybrid codec which combines a modified version of the
linear prediction based SILK codec [8], which is optimised
for speech, with the Modified Discrete Cosine Transform
(MDCT) based CELT codec [9], an all-purpose codec. This
class of perceptual codec is not specifically designed for use
in ASR applications since the spatial information present in
multichannel signals is often distorted or removed completely
in favor of preserving perceptual quality. Recently however,
a method to optimise the Opus codec for microphone array
coding with ASR in mind was proposed in [10]. Settings
within the standard Opus codec were modified to optimise
performance for beamforming and ASR, such that the signals
could still be decoded by the standard Opus decoder.

The first step taken in [10] towards overcoming this problem
was to disable a number of features of the SILK and CELT
parts of Opus that were detrimental to ASR/beamforming
performance. To this end, the CELT intensity stereo and
folding features were disabled and set to their lowest allowable
amount respectively. Furthermore, the SILK codec convention-
ally encodes the signal into mid and side channels, with the
option to discard the side channel to optimise for perceptual
quality if there is a low bitrate allocation. Later, in [10] a
method for waveform matching is proposed where the split
is optimised in order to preserve the phase response. These
three changes together represent one step in modifying Opus
for multichannel audio coding.

The second step proposed in [10] is to pre-process the input
signals to the Opus codec using a spatial Discrete Fourier
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Transform (DFT). Due to the high correlation between neigh-
boring channels, [10] states that any orthogonal transformation
could decorrelate the signals thus reducing the amount of
redundant information. The DFT was chosen as it is not
signal or array geometry dependent, giving greater flexibility
in implementation. [10] showed that the spatial DFT was
decorrelating the signals by showing a table of the power of
the raw channels in comparison to the DFT channels.

When these two steps were combined together the new Opus
codec consistently outperformed the alternative of indepen-
dently encoding all audio channels with their own Opus en-
coder, with a maximum Word Error Rate Reduction (WERR)
6.4% when the two Opus codecs were compared at 16 kbps
using 7-channel microphone array signals.

An alternative method for Microphone Array Coding
(MAC), known as Relative Transfer Function Microphone
Array Coding (RTF-MAC), was proposed in [11] which
allows for microphone array data to be transmitted with a
minimal increase in bitrate. This was achieved by expressing
the multichannel signal from 𝑀 microphones in terms of a
reference channel, compressed with a conventional single-
channel audio codec, 𝑀−1 Relative Transfer Functions RTFs,
and (optionally) 𝑀−1 RTF-coding residual signals. The RTFs,
which in [11] are estimated using the Improved Proportionate
Normalized Least Mean Squares (IPNLMS) adaptive filtering
algorithm [12], [13], encode all the non-reference channels,
which under certain conditions are a compact representation,
particularly when the acoustic scenario is close to being
stationary such that neither the sound source signals nor the
microphone array move. A block diagram for the system can
be seen in Fig 1.

The previous system was evaluated in [11] in terms of time
domain Mean Square Error (MSE), frequency domain error,
a perceptual metric Perceptual Evaluation of Speech Quality
(PESQ) [14], [15] and by evaluating the Word Error Rate
(WER) of a pre-trained ESPnet2 [16], [17] ASR system with
an IPNLMS based RTF-MAC [11] and a BeamformIt beam-
former [18] front-end. The codec was previously compared to
a multichannel Opus codec where each channel was encoded
independently, which was prior to the publication of [10].
The system showed improved performance, outperforming
Opus [5], [6] particularly at low bitrates where the codec
extended the lower bound of bitrates that the ASR could
successfully operate at. For example, when paired with the
same ASR back-end, the RTF-MAC achieved approximately
10% WER for bitrates around 3−5 kbps/ch while Opus showed
a WER of around 26% for the bitrates around 8 kbps/ch.

The present paper progresses the previous work carried out
in [11] in a number of ways. First of all, the codecs were
again used as front-ends to ASR systems, but in this research
we trained multichannel Self Attention Channel Combinator
(SACC) ASR systems [19], [20], allowing us to evaluate
how different codecs preserve the spatial information used
by multichannel ASR. Furthermore, new configurations of the
RTF-MAC have been tested which periodically update the
RTFs every 2 s. This allows the RTF-MAC to adapt to time-

varying acoustic scenarios in a manner that can be matched
to the expected level of non-stationarity in the application
of interest. In addition, DOA estimation was performed on
the decoded signals using GCC-PHAT [21] as an example of
a commonly deployed ‘workhorse’ baseline method, and the
error between the estimated and the ground truth DOA was
calculated. This was done to investigate the viability of the
multichannel signal for further processing in the cloud such
as spatial processing and scene analysis.

II. METHODOLOGY AND EXPERIMENTAL SETUP

A. Periodically Updated RTF-MAC

Fig. 1: Block diagram of RTF-MAC . The dashed box indicates
the parts that need to be repeated for the 𝑀 th non-reference
channel 𝑋em

Figure 1 shows a block diagram of how the proposed
RTF-MAC was implemented with a SACC-based multichannel
ASR back-end. The RTF-MAC properties that were constant
for all configurations were determined empirically and were
set as follows: The IPNLMS leaning rate, denoted by `, was
set to 0.1. This parameter controls the trade-off between quick
convergence and converged accuracy. The 𝛼 parameter of
IPNLMS which controls the sparsity of the estimated RTFs
[12], [13] was set to 𝛼 = 0.5. An 𝑀 = 8 channel microphone
array was employed in our tests and the reference channel
chosen in all cases was channel 4, as this is located more
centrally in the array, allowing for shorter RTF filters to be
used. In the particular configurations evaluated in this work, all
RTF-encoding residuals were ignored, as is appropriate when
targeting low bitrate configurations, since it was shown in [11]
that the addition of residuals did not significantly improve
ASR WER. Finally, the system uses the output of a Voice
Activity Detector (VAD) in order to freeze the adaptation of
the IPNLMS during non-speech periods. The VAD used in
these test was [22] and was calculated offline by calculating
the VAD of clean reference signals and subsequently time
aligning to account for the propagation delay found in the
recorded signals.

Here, we present two RTF-MAC configurations. C2 uses
the highest performing combination of parameters found in
the grid search with a 256-tap RTF being updated every 2 s
and a reference channel encoded at 32 kbps. C100 matches a
configuration found in [11], with a 16 kbps reference channel
and a 512-tap RTF, with the only difference being that the RTF
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was also updated every 2 s. This is crucial as it allows for pro-
cessing of non-stationary acoustic scenarios commonly found
in real-world applications, such as conversational speech. The
C2 and C100 have total 8-channel bitrates of 46.9 and 44 kbps,
respectively. These configurations were found by running a
sweep search with differing IPNLMS algorithm values using
a ESPnet2 model pre-trained on the LibriSpeech data [23].
The configurations with the lowest WER within the desired
bitrate region were then chosen for further investigation. More
details of the system used for the parameter sweep can be seen
in [11].

B. Multichannel Opus

In both cases, we use the SILK part of the OPUS codec
due to its better performance for speech at low bitrates [8]
and a constant bitrate of 6 kbps/ch giving the total bitrate of
48 kbps. In the first test, each channel was encoded separately
(MC OPUS SEP) and in the second test we enabled stream
coupling for all channels (MC OPUS CUP) [24].

C. ASR

The ASR experiments are based on a multichannel SACC
front-end [19] to an attention-based, ContextNet [25] encoder
and a single layer LSTM decoder. The SACC front-end com-
bines the magnitudes of signals from 𝑀 microphones in the
Short Time Fourier Transform (STFT) domain and is trained
jointly with the ASR system. For all experiments, the ASR
systems were trained for 90 epochs and a matched condition
trained model was used to evaluate the performance potential
of each codec.

III. DATA

The ASR systems were trained using 460 hours of sim-
ulated multichannel data based on clean speech from Lib-
riSpeech [23] and the English partition of Mozilla Common
Voice [26], selected using the NISA [27] method as described
in [20]. The multichannel simulation was performed by con-
volving the clean speech utterances with 8 channel Room
Impulse Responses (RIRs) simulating Uniform Linear Array
(ULA) with 33 mm inter-microphone spacing and a number
of directional sources placed at random positions in a large
set of rooms (T60 in range 0.3 − 0.8 s) using the Image
method [28]. Following convolution with the RIRs, ambient
noise was added in an SNR range of 5 to 25 dB, plus 45 dB
SNR white noise to simulate microphone self-noise. The gain
of each channel was also augmented in the 0.1 to 2 dB range
for each utterance and finally, the overall gain was adjusted,
randomly in the −1 to −15 dBFS range.

The evaluation was performed with two test sets. The first
one was a playback recording of a subset of 500 utterances
from the clean-test partition of the LibriSpeech corpus in
a typical office. The utterances were recorded with an 8-
channel ULA mounted on a wall and played back from an
artificial mouth simulator placed in four positions (denoted
as P1–P4). The ground truth DOAs for each position can be
seen in Table II. In addition to this playback data, we also

created a test set by convolving the 500 clean Libri utterances
with simulated RIRs representing 20 rooms and 25 source
receiver positions (8 channel ULA) covering a T60 range of
0.2 − 0.4 s. Subsequently, 30 dB of ambient noise was added
to the data. This simulated test set thus represents clean and
mildly reverberant data with a large coverage of azimuth (from
the centre of the ULA to each source, covering 20 to 160°). We
use this simulated test set primarily for the DOA estimation
accuracy experiments.

IV. EVALUATION

The codecs were evaluated using two main metrics: the
WER of the codec-ASR system and the DOA estimation error
for different positions. We include an explicit evaluation of the
DOA estimation because, like many ASR systems, the SACC
front-end uses only magnitude spectral information, albeit
multichannel. In contrast, many speech processing applications
require use of the phase information such as for source
localization.

A. DOA evaluation

The DOA of the signal was estimated using the previously
identified GCC-PHAT baseline [21] which was applied to the
uncompressed signals and then compared to the decoded sig-
nals. Following this, the magnitude of the differences between
the DOAs estimated using the compressed and uncompressed
signals were calculated. Estimates generated and evaluated
using the uncompressed signals are denoted in the following
by UC. The DOA was calculated using GGC-PHAT operating
between channels 1 and 8. GCC-PHAT was calculated in the
STFT domain with a window size of 2048 samples, a hop size
of 512 samples, zero padding to 16384 samples for Inverse
Short Time Fourier Transform (ISTFT), a smoothing factor of
0.32, and with a bandwidth limited to 0.4−7.8 kHz. The speech
data was sampled at a rate of 16 kHz. The DOA estimations
were filtered by energy-based VAD with an energy threshold
of −75 dB.

V. RESULTS AND DISCUSSION

Table I shows the ASR results for different codec-ASR
systems when tested using the Libri playback test set in terms
of WERs and WERRs.

Method Bitrate (kbps) WER (%) WERR (%)
MC OPUS SEP 48 14.9 0
MC OPUS CUP 48 12.9 13.4
RTF-MAC C100 44 12.0 19.5
RTF-MAC C2 46.9 10.6 28.9

TABLE I: WER and WERR of different codec-ASR systems
evaluated on the Libri playback test set

RTF-MAC clearly achieves improved performance in com-
parison to both configurations of the Opus codec with
RTF-MAC C2 achieving a WERR of up to 28.9% relative to
the MC OPUS SEP, and OPUS MC CUP achieving a 13.4%
WERR. This indicates that the RTF-MAC-ASR system is able
to retain significantly more information which is useful to the
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multichannel SACC ASR system. [10] showed a maximum
WERR of 6.7% for Opus with waveform matching and the
spatial DFT in comparison to Opus encoding each channel
independently. Although this is significantly smaller than the
28.9% WERR achieved here by the RTF-MAC system and
13.4% WERR achieve by MC OPUS CUP, it should be noted
that the differences in bitrate and ASR implementations here
make a direct comparison difficult. For this reason we intend
to implement the encoder in [10] for comparison in the near
future.

Table II shows the ground truth DOA and the error in the
DOAs that were estimated using the GCC-PHAT algorithm
operating on the uncompressed signals (UC Error). Addi-
tionally it shows the magnitude of the estimation errors in
degrees for all the DOAs estimated from the decoded signals,
relative to the DOA estimated from the unencoded signals. As
expected, DOAs estimated from the unencoded signals have
the smallest estimation errors when averaged over all positions.
When comparing the Opus codec and the RTF-MAC, it is
clear to see that the RTF-MAC offers improvements. In the
case of RTF-MAC, an increase in the DOA error by 7.4°
relative to the unencoded signal on average. The Opus was
shown to increase the error by 19.8° on average. However, this
average is partly misleading as the DOAs estimated by Opus
in this configuration were always between 89.6 and 90.7°,
indicating that almost all phase information was removed in
this configuration. This is confirmed by random fluctuation
of angle around 90° in the repeated calculations. Therefore,
instances where the Opus DOA errors appear to be lower, such
as with P1–P3 are actually instances where the ground truth
angle is closer to the 90° which is the angle always estimated
for the Opus codec. This shows that Opus does not encode
the spatial information but that with RTF-MAC it is possible
to extract spatial features. Another notable point is that for
positions P2 and P4 using the RTF-MAC codec matches or
reduces the magnitude of the DOA estimation error compared
to using uncompressed signals. This is due to the RTFs being
a desirably ineffective codec for noise signals.

Method
Position P1 P2 P3 P4 Mean

over P1-P4
Ground Truth 92 69 115 29 -
UC Error 1.8 1.3 7.0 7.1 4.3
MC OPUS SEP
vs UC Error 3.9 20.1 18.4 54.6 24.3

MC OPUS CUP
vs UC Error 0.1 21.6 11.8 47.5 20.3

RTF-MAC C2
vs UC Error 4.6 1.3 18.3 5.2 7.4

TABLE II: Mean absolute errors of DOA estimation in degrees
for different codec-ASR systems and positions with the Libri
playback test set

Figure 2 shows the box plots of DOA errors for the consid-
ered configurations of codecs. It is clear that the RTF-MAC
configurations again give the most successful DOA estimates
with errors comparable to the uncompressed signal, whereas

the DOA estimation errors from Opus encoded signals spread
over a broader range of angles showing that Opus does not
preserve the spatial information. Notably, the RTF-MAC again
slightly improves the DOA estimation performance with our
simulated data set. The bias and standard-deviation of the
data displayed in the box plots can be seen in Table III. This
confirms that using the RTF-MAC codec reduced the bias and
standard deviation of the DOA estimation. This is most likely
due to the tendency of the RTF estimator to remove the noise
that is not spatially correlated. This was verified by calculating
the noise levels of the signal using NISA as shown in Table
IV.

Fig. 2: DOA error for different codecs and their configurations
tested on the simulated test set

Method DOA Bias DOA 𝜎

UC -0.13 10.4
MC OPUS SEP -2.66 35.27
MC OPUS CUP 0.67 29.37
RTF-MAC C100 -0.10 8.23
RTF-MAC C2 -0.33 8.25

TABLE III: Bias and standard deviation 𝜎 of the DOA
estimates for the simulated test set processed with each codec

Method C50 (dB) SNR (dB) PESQ
UC 21.5 27.5 3.2
MC OPUS SEP 18.7 24.8 2.9
MC OPUS CUP 17.1 26.6 3.0
RTF-MAC C100 23.4 26.2 3.2
RTF-MAC C2 23.3 26.8 3.3

TABLE IV: Signal parameters of the decoded test set estimated
using NISA

VI. CONCLUSIONS

We developed a codec for microphone arrays that supports
multichannel spatial infromation suitable for acoustic signal
processing and and cloud-based speech recognition. The codec
explicitly codes the spatial information using RTFs. The
proposed codec combines the RTF-MAC with multichannel
ASR and has been shown to recude the WER in comparison
to a system where Opus is employed as the codec in the front-
end. Additionally, we have shown that the decoded signals
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obtained from the RTF-MAC are useful in the task of DOA
estimation, with errors very similar to uncompressed data.
Furthermore, the codec performs periodically updating the
RTFs which makes it applicable to real-world scenarios, such
as conversational speech.
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