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Abstract—Accurate direction-of-arrival (DOA) estimation in
noisy and reverberant environments is a long-standing challenge
in the field of acoustic signal processing. One of the promising
research directions utilizes the decomposition of the multi-
microphone measurements into the spherical harmonics (SH)
domain. This paper presents an evaluation and comparison of
learning-based single-source DOA estimation using two recently
introduced SH domain features denoted relative harmonic coeffi-
cients (RHC) and relative modal coherence (RMC), respectively.
Both features were shown to be independent of the time-varying
source signal even in reverberant environments, thus facilitating
training with synthesized, continuously-active, noise signal rather
than with speech signal. The inspected features are fed into a
convolutional neural network, trained as a DOA classifier. Exten-
sive validations confirm that the RHC-based method outperforms
the RMC-based method, especially under unfavorable scenarios
with severe noise and reverberation.

Index Terms—Learning-based direction-of-arrival estimation,
relative harmonic coefficients, relative modal coherence.

I. INTRODUCTION

Accurate knowledge of the DOA of an acoustic source is
an important building block in many acoustic/audio signal
processing techniques, including spatial beamforming, speech
separation, speech recognition, and sound event detection [1].

Most unsupervised localization methods, such as time dif-
ference of arrival (TDOA) [2]–[4], steered response power
(SRP) [5], [6], and subspace-based methods [7], are easy to
implement and their localization accuracy is reasonable. How-
ever, their performance declines severely in complex acoustic
environments, specifically as a result of strong acoustic reflec-
tions and low signal-to-noise ratios. In recent years, there is a
growing interest in using deep learning-based approaches for
obtaining improved localization performance in unfavorable
environments. These methods are typically based on learning
the patterns of the acoustic features and their relation to the
source position using a training dataset measured in advance
over a pre-defined source area of interest. Then, they utilize
the learned patterns to estimate the position of an unknown
sources in the test stage [8]. Deep learning localization meth-
ods may either classify the desired source DOA into one of
candidate directions, or use regression to directly estimate the
DOA. In this paper we adopt the former approach, namely
to cast the localization as a classification task. Several neural
networks approaches for data-driven source localization were
introduced in a recent special issue [9].

Several neural network architectures were adopted to the
task of acoustic source localization, e.g. deep neural networks
(DNN) [10], [11], convolutional neural networks (CNNs)
[12], [13], and convolutional and recurrent neural networks
(CRNNs) [14], [15]. Different features were used, including
but not limited to, binaural features [16], eigenvectors of the
spatial covariance matrix [17], generalized cross-correlation
(GCC) [10], and short-time Fourier transform (STFT) of
the received signals [12]. A comprehensive list of recent
approaches can be found in the survey paper [18].

Spherical microphone arrays are widely used in source
localization tasks [15], [19], [20], as they are capable of
recording multi-channel measurements over a large area, thus
providing more relevant cues of the source(s) to be localized.
The multi-channel measurements can be decomposed into the
spherical harmonics (SH) domain using a set of orthogonal
spatial functions [21]. Following the W-disjoint orthogonality
assumption [22], Perotin et al. [20] adopted a CRNN architec-
ture in the SH domain to estimate the DOAs of multiple sound
sources. Then, Grumiaux et al. [23] proposed an improved
scheme by changing the layout between convolutional and
pooling layers of the CRNN in [20]. The input features of both
algorithms in [20], [23] are pseudo-intensity vectors, which are
denoted using the first-order Ambisonics in the SH domain.
Initially, the pseudo-intensity vector was used by a closed-
form DOA estimator in [24], [25]. Recently, Hu et al. in [26]
proposed another closed-form DOA estimator using a new SH
domain feature denoted relative harmonic coefficients (RHC)
[27]. This estimator outperformed the intensity-based method
under equivalent noisy and reverberant conditions. The RHCs
are the SH domain counterparts of the relative transfer func-
tions (RTFs) [28], [29], that are spatially more discriminative,
as the spherical harmonic decomposition enhances the spatial
resolution over space. Several localization schemes utilized the
RHC such as [26], [27], [30]–[34].

One of the main attributes of the RHC as a feature for source
localization is its independence of the time-varying source sig-
nal. This is also true for the relative modal coherence (RMC),
another SH domain feature recently defined by Fahim et al.
[35], that uses the covariance of the decomposed spherical
harmonic coefficients. The RMC in [35] was used as a feature
for a CNN-based multi-source DOA estimator in reverberant
soundfield, while not considering noisy environments.
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The aim of the current contribution is the evaluation and
comparison of learning-based, single source, DOA estimation
procedures with either the RHC or the RMC as input features,
in noisy and highly reverberant environments. Compared with
past research examining these two features [26], [27], [30]–
[33], [35], the contributions of this paper are: (i) presenting
a performance evaluation and comparison between both fea-
tures in the source localization task; (ii) casting the RHC-
based localization scheme as a classification task rather than
regression [30] and implementing the classifier using CNN;
and (iii) considering more challenging acoustic environments,
that is, source features are more distorted by severe noise and
reverberation.

II. ACOUSTIC MODEL

Assume a spherical microphone array with M microphones
capturing a soundfield in a reverberant and noisy environment.
The polar coordinates of the microphones are given by xj =
(r, θj , ϕj), j = 1, . . . ,M with respect to its local origin O.
Assume a single far-field sound source propagating from an
unknown DOA, e.g., Φ = (ϑs, φs) where 0 < ϑs < π, 0 <
φs < 2π with respect to the origin of the microphone array.
Hence, the measured sound pressure in the STFT domain, as
measured by the j-th microphone, is the sum of direct-path
signal, the sound reflections and the noise signal,

Pxj
(t, k) = S(t, k)

[
Gd(k)e

ik⊤xj +
∫
ŷ
Gŷ

r (k)e
ik⊤

ŷ xjdŷ
]
+ Vxj

(t, k)

(1)

where t ∈ {1, . . . , T} and k ∈ {1, . . . ,K} denote the time
and frequency index in the STFT domain, k = 2πf/c,
f is the frequency and c is the speed of sound, S(t, k)
denotes the source signal, Gŷ

r denotes the reflection gain
along an arbitrary direction of ŷ, Gd(k) denotes the source’s
direct gain, the wavenumber vector is represented by k =
(k cosϕ sin θ, k sinϕ sin θ, k cos θ)⊤, and Vxj (t, k) denotes
the additive noise signal. Note that the additive noise in (1) is
assumed to be non-directional, otherwise it could be regarded
as an additional source to be localized.

III. SPATIAL DECOMPOSITION OF THE SOUNDFIELD

This section introduces the spatial decomposition of a
measured soundfield. The sound pressure measured by the
spherical microphone array can be decomposed into the SH
domain using a set of orthogonal spatial functions [21],

P(xj , k) =

N∑
n=0

n∑
m=−n

αnm(k) bn(kr)Ynm(θj , ϕj) (2)

where the time index t is omitted for brevity, N = ⌈kr⌉ is the
truncated order of the soundfield [36], and

Ynm(θ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pnm(cos θ)eimϕ (3)

is the spherical harmonic function with order n and mode m,
Pnm(·) denotes the real-valued associated Legendre function,
bn(·) is a function based on the array configuration,

bn(kr) =

{
jn(kr), for an open array

jn(kr)− j
′
n(kR)

h′
n(kR)

hn(kr), for a rigid array
(4)
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Fig. 1: Block diagram of the proposed localization approach,
which comprises of a training and test stage, respectively.

where R denotes the radius of the spherical microphone array,
j
′

n(·) and h
′

n(·) denote the partial derivative of the spheri-
cal Bessel and Hankel functions, respectively, and αnm(k)
denotes the spherical harmonic coefficients that characterize
the measured soundfield in the SH domain. Assume far-field
scenarios, namely that the aperture of the recording area is
much smaller compared to its distance to the source [37]. In
this case, the spherical harmonic coefficients in (1) are given
by,

αrev
nm(t, k) =αdir

nm(t, k)+
N∑

v=0

v∑
u=−v

αdir
nm(k)α̂vu

nm(k)︸ ︷︷ ︸
Reverberant-path

+γnm(t, k) (5)

where γnm(t, k) denotes the decomposed noise signal, and

αdir
nm(t, k) = S(t, k)Gd(k)4πi

nY ∗
nm(ϑs, φs) (6)

denotes the direct-path signals, (·)∗ denotes the complex con-
jugate operator and α̂vu

nm(k) denote the coupling coefficients
that are independent of the sound source, and remain fixed in
a static reverberant acoustic environment, where the settings
of the environment and the microphone array are not changing
over time [38].

IV. PROPOSED LEARNING-BASED LOCALIZATION

A. Framework of the Algorithm
This paper presents a data-driven solution to localize an un-

known sound source in adverse acoustic conditions, including
noise and reverberation. Figure 1 depicts the compact block
diagram of the algorithm, consisting of two disjoint stages, as
described below.
Training stage: (i) Select NL labeled training samples within
a defined area of interest (AoI); (ii) Measure the recordings due
to each training source in the AoI using a spherical microphone
array, decompose the soundfield into the SH domain, and then
extract the corresponding source features; (iii) Use the training
feature set and labeled DOAs to train the deep learning-based
classifier (i.e., CNN) that will be used in the test stage.
Test stage: (i) Measure the recordings from an unknown test
source position within the AoI; (ii) Decompose the soundfield
into the SH domain, and then extract the test source features
for localization; (iii) Estimate the source’s unknown DOA
using the classifier obtained in the training stage.
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The learning-based DOA classifier adopts two spatial fea-
tures defined using the spherical harmonic coefficients in (5),
as introduced below.
B. SH Domain Features

1) Relative harmonic coefficients (RHC): In [27], [30], [31]
the RHC were formally defined in a noise-free environment
as the ratios between spherical harmonic coefficient at the
individual modes (n,m) and mode (0, 0). Assume a noise-free
environment, the ratio between αrev

nm(t, k) and αrev
00 (t, k) in (5),

defines the feature expression in reverberant environment,

βrev
nm(k) = 2

√
πinY ∗

nm(ϑs, φs)λ(k) (7)

where

λ(k) =
1 +

∑N
v=0

∑v
u=−v α̂

vu
nm(k)

1 +
∑N

v=0

∑v
u=−v α̂

vu
00 (k)

(8)

depends on the fixed coupling coefficients in the assumed
static environment. The expression in (7) confirms that the
RHCs only depend on the source DOA, even in a reverberant
environment. In practice, we adopt the biased RHC estimator
in [30] to extract the RHC in noisy environments, using the
ratio between the CPSD (cross power spectral density) and the
PSD of the spherical harmonic coefficients,

β̄rev
nm(k) =

E
{
αnm(k)α∗

00(k)
}

E
{
α00(k)α

∗
00(k)

} (9)

where E
{
·
}

denotes the statistical average over the time-
varying signal. Note that, in non-stationary noise environ-
ments, the RHC contains a time-dependence due to the
noise, as the biased estimator in (9) cannot fully remove the
noise influence. Finally, for the N -th order array, define the
(N + 1)2 × 1 feature vector:

βrev(k) =

[
1,

E
{
α1,−1(k)α

∗
00(k)

}
E
{
α00(k)α

∗
00(k)

} , · · · ,
E
{
αNN (k)α∗

00(k)
}

E
{
α00(k)α

∗
00(k)

} ]⊤
.

(10)
2) Relative modal coherence (RMC): The covariance of the

time-varying spherical harmonic coefficients in (5) is denoted:

E
{
αnm(k)α∗

n′m′(k)
}
. (11)

Recent work [35] defined the relative modal coherence (RMC)
as the normalized covariance of the spherical harmonic coef-
ficients in (11), i.e.,

E
{
αnm(k)α∗

n′m′(k)
}
/E

{
α00(k)α

∗
00(k)

}
(12)

where the ratio between the numerator and denominator re-
moves the influence of the source signal. For the N -th order
microphone array, it has a two-dimensional feature matrix, i.e.,

1 · · ·
E
{
αNN (k)α∗

00(k)
}

E
{
α00(k)α

∗
00(k)

}
· · · · · · · · ·

E
{
α00(k)α

∗
NN (k)

}
E
{
α00(k)α

∗
00(k)

} · · ·
E
{
αNN (k)α∗

NN (k)
}

E
{
α00(k)α

∗
00(k)

}

 (13)

which actually denotes the covariance of RHC in (9) (refer to
[35] for the expression of the RMC).

Here, additional explanations about the features are pro-
vided: (i) Both spatial features are separately used as inputs

to the deep learning architecture, hence, a fair comparison of
the localization performance can be presented (see Section V).
For a fair comparison with RHC, the (N + 1)2 × (N + 1)2

RMC matrix in (13) is also flattened to a (N + 1)4 × 1
vector. (ii) Since only a single-source case is evaluated, the
average operator, in (10) and (13), utilizes all frames to
extract the features. Hence, in the test stage, the time-domain
recordings correspond to two features for localization, one is
the K×(N+1)2 RHC and the other is the K×(N+1)4 RMC,
respectively (K denotes the number of frequency bins in (1)).
(iii) Both spatial features are complex-valued. We therefore
concatenate the real and imaginary parts of the features, to
finally obtain K × (N +1)2 × 2 RHC and K × (N +1)4 × 2
RMC tensors, that are used as inputs of the networks.

C. Convolutional Neural Networks

The localization algorithm adopts a CNN architecture to
infer the underlying relations between the spatial features and
the source DOA. Typical CNN architectures comprise multiple
layers of convolution as well as pooling operations for signif-
icantly reducing the number of parameters. For simplicity, the
CNN used by this paper uses two convolution layers (64 local
filters), directly followed by one fully-connected layers (1000
nodes) to produce a 360× 1 output vector, without using any
pooling operations. The supporting reason is that the spatial
features are directly related to the source position, thus only
imposing mild requirements on the network complexity. The
CNN requires all the SH modes, as each of them contains
unique characterization of the soundfield. Hence, the 64 local
filters are set with the size of 3× 1.

V. SIMULATION STUDY

In this section we simulate signals in challenging environ-
ments to validate the effectiveness of the learning-based algo-
rithm, and present a full comparison between the localization
accuracy using the two features.

A. CNN Training with Synthesized White Noise Signals
As analyzed above, both features are independent of the

time-varying signals, allowing to generate the training samples
using a synthesized white noise signal, rather than speech
recordings with non-negligible silent periods. The acoustic
paths between the sound source and an open-sphere spherical
microphone array with 32 channels and 4.2 cm radius are
simulated by the room impulse response (RIR) generator
toolbox [39]. We use a convolution between the simulated RIR
and the synthesized noise to generate the measured recordings.
Then, the time-domain recordings are transformed into the
STFT domain using a 0.5 s window, 90% overlap, 4096-
point discrete Fourier transform (DFT), and 8 KHz sampling
frequency. Then, the sound pressure is decomposed into the
SH domain to obtain the spherical harmonic coefficients.
Finally, using (10) and (13) the RHC and RMC, respectively,
are calculated. Thirty frequency bins ranging from 1600 Hz
to 2500 Hz, measuring the soundfield up to second-order
(N = 2), are exploited.
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TABLE I: Training parameters

Signal Synthesized noise signals
Room size (6× 4× 3) m

Array position (2× 2× 2) m
Source-array distance 1 m

T60 800 ms
Labeled DOAs {0◦, 1◦, 2◦, · · · , 358◦, 359◦}

For simplicity, we assume the source elevation to be fixed.
Hence only the azimuth angle is sampled. We use one-degree
resolution, i.e., NL = 360. See Table I for more parameters of
the setup. Finally, we construct two training feature sets, with
dimensions 360× 30× 9× 2 for RHC and 360× 30× 81× 2
for RMC, respectively. We set the number of epochs to 100
when implementing the CNN using tensorflow package.

B. Baseline Approach and Evaluation Metric

For a comprehensive evaluation, in addition to the CNN
based approaches, we adopt a simple baseline approach.
Specifically, the DOA is estimated by calculating the distances
between the test feature and all candidate features associated
with the labeled DOAs. We localize the source with the
minimum distance calculated below,

T (B⋆,BnL
) =

||B⋆ −BnL
||2

||B⋆||2||BnL
||2

, 1 ≤ nL ≤ NL (14)

where B⋆ and BnL
denote the test and training features

respectively, and || · ||2 denotes an ℓ2 norm of the inputs.
In total, we compare four localization approaches which
we denote ‘RHC-CNN’, ‘RMC-CNN’, ‘RHC-distance’ and
‘RMC-distance’, respectively. In the test stage, we apply all
approaches to Mtot > 1 test samples. Each test uses a speech
source located at randomly selected DOA. To evaluate the
algorithms, we use the success-ratio (SR) quality measure:

SR =
Msuc

Mtot
× 100% (15)

where Msuc denotes the number of cases in which the sound
source was successfully localized. Since a dense DOA sam-
pling resolution is used, we declare successful localization
when the absolute error between the estimated and original
azimuth angles is less than three degrees, i.e., |φori−φest| ≤ 3◦.

C. Performance in Noise and Reverberation Conditions

The algorithms are evaluated and compared in adverse noise
and reverberation conditions. Speech signal randomly selected
from the TIMIT database (down-sampled to the frequency of
8 KHz) is used as the input signal. Figure 2 demonstrates
examples of the predicted output as a 360× 1 vector obtained
from the CNN, and the peak point denotes the estimated
DOA. We observe that the RHC-based method exhibits a more

TABLE II: Performance in various noisy environments.

Methods SNR = -6 dB SNR = -3 dB SNR = 0 dB
RHC-distance 38% 50% 78%
RMC-distance 4% 16% 30%

RMC-CNN 18% 34% 60%
RHC-CNN 60% 84% 92%

0 50 100 150 200 250 300 350

Azimuth/°

-6

-4

-2

0

(a) RHC

0 50 100 150 200 250 300 350

Azimuth/°

-8

-6

-4

-2

0

(b) RMC

Fig. 2: Example of the CNN’s output vectors (0 dB noise),
where the red circle denotes the source’s true azimuth.

significant peak as compared to the RMC-based method, indi-
cating a better capability to classify the test candidate over the
training feature set. Table II depicts the localization accuracy
of all approaches at low SNR levels, namely {−6,−3, 0} dB,
contaminated by a Gaussian white noise. For both features, we
see that the CNN-based approaches outperform the distance-
based methods. This should be attributed to the sensitivity
of distance based estimator in (14) to the acoustic reflections
and distortions in complex environments, as compared with
the CNN based methods that infer the underlying mapping
between the source feature(s) and position(s). We observe
that the ‘RHC-CNN’ achieves the best performance under all
scenarios, accurately localizing 84% of all the test sources,
even with SNR = −3 dB noise and T60 = 800 ms. The
‘RMC-distance’ degradation due to noise is significantly more
pronounced than the ‘RHC-distance’ degradation, confirming
that the RMC is less effective as a feature for localization.
This may be attributed to the RMC, being equivalent to the
covariance matrix of RHC, suppresses/complicates the direct
and simple relation between the reverberant feature and source
location, as originally preserved within RHC.

VI. CONCLUSION

This paper presents an evaluation and comparison of
learning-based source localization algorithms in adverse noisy
and reverberant environments using two spherical harmonics
domain features. We also simplify the operational complex-
ity of the data-driven algorithms by measuring the training
samples using synthesized noise signal in the training stage.
Extensive evaluations, under various unfavorable acoustic con-
ditions, confirms that the relative harmonic coefficients is
more discriminative, thus provides better localization accuracy
than the relative modal coherence based method. The current
study only examined source localization under single-source
scenarios, while further efforts are required in the future for
generalizing the algorithm to multi-source scenarios.
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